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Abstract

Multisensor data fusion is presented in a rigorous mathematical format, with defini-
tions consistent with the desires of the data fusion community. In particular, a model
of event-state fusion is developed and described, concluding that there are two types of
models on which to base fusion (in the literature referred to as within fusion and across
fusion). Six different types of fusion are shown to exist, with respect to the model, us-
ing category theory. Definitions of fusion rules and fusors are introduced, along with
the functor categories, of which they are objects. Defining fusors and competing fu-
sion rules involves the use of an objective function of the researchers choice. One such
objective function, a functional on families of classification systems, and in particular, re-
ceiver operating characteristics (ROCs), is introduced. Its use as an objective function is
demonstrated in that the argument which minimizes it (a particular ROC), corresponds to
the Bayes Optimal threshold, given certain assumptions, within a family of classification
systems. This is proven using a calculus of variations approach using ROC curves as a
constraint. This constraint is extended to ROC manifolds, in particular, topological sub-
spaces ofR”. These optimal points can be found analytically if the closed form of the
ROC manifold is known, or calculated from the functional (as the minimizing argument)
when a finite number of points are available for comparison in a family of classification
systems. Under different data assumptions, the minimizing argument of the ROC func-
tional is shown to be the point of a ROC manifold corresponding to the Neyman-Pearson
criteria. A second functional, th& norm, is shown to determine the min-max threshold.

Finally, more robust functionals can be developed from the offered functionals.
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THE APPLICATION OF CATEGORY THEORY AND ANALYSIS
OF RECEIVER OPERATING CHARACTERISTICS TO
INFORMATION FUSION

|. Introduction
1.1 Problem Statement

Data fusion as a science has been rapidly developing since the 1980's. Fusion liter-
ature encompasses many aspects of data fusion from mathematical techniques [8, 15, 55]
to technologies, how to register and align data, as well as resource management of the
assets to be used. The Joint Directors of Laboratories Data Fusion Subpanel (JDL) has
put out guidance in the form of a functional model (which we will review later). What is
missing? A clear definition of what fusion is in a mathematical sense. While many math-
ematical techniques have been developed and compiled , one look at the spread and variety
of sub-processes suchsensorfusion,datafusion, andclassifierfusion (all of which can
be identified by other names) demonstrates the lack of unity within the science. As late

as 2001, the Handbook of Multisensor Data Fugids], includes a recommendation that

data fusion be defined as

the process of combining data or information to estimate or predict entity
states.

This is an improvement over the Handbook’s previous version, but what are the mathe-
matical formulations for fusion? How shall we define the technology? For example, does
it matter how data or information are combined? What is meant by data or information?
Does the estimation or prediction of entity states need to conform to some standards of
accuracy or reliability to be called fusion? Are there clear delineations of different types

of fusion or is all fusion the same? How can we mathematically define and compare dif-



ferences? This dissertation will explore these questions, but will focus on the following

problem:

An entity (say some corporation) wants to combine some sets of constructed infor-
mation (or data) into a new set of symbols which clarifies the object from which the in-
formation (or data) originated. The technology developed includes a finite humber of
algorithms to compute the combinations. The entity has two problems it would like to

address:

1. In documenting its efforts, writing patent applications, conversing with the fusion
community, and contracting for technologies from other entities, it needs a common

framework (preferrably quantitative in nature) to accomplish these tasks.

2. How does the entity compete the algorithms to ensure it is getting the most for its

investment?

In particular, we envision developing a rigorous mathematical lexicon for the US Air Force
to use in creating documents contracting for fusion technologies. Although the definitions
will be structured from abstract mathematical ideas, the vocabulary will be rather intuitive
in nature. Furthermore, we present one concept of how to compete fusion technologies.

Main mathematical results are identified as theorems, lemmas, and corollaries.

Since information fusion is a rapidly advancing science, researchers are daily adding
to the known repertoire of fusion techniques (that is, fusion rules); however, a method-
ology to define what fusion is and when it has actually occurred has not been widely
discussed or identified in the literature. An organization that is building a fusion sys-
tem to detect or identify objects using existing assets or those yet to be constructed will
want to get the best possible result for the money expended. It is this goal which moti-
vates the need to construct a way to compete various fusion rules for acquisition purposes.
There are many different methods and strategies involved with developing classification
systems. Some rely on likelihood ratios, some on randomized techniques, and still others
with a myriad of schemes. To add to this, there exists the fusion of all these technolo-

gies which create even more classification systems. Since receiver operating characteris-



tic (ROC) curves can be developed for each system under test conditions, we propose a
functional defined on ROC curves as a method of quantifying the performance of a classi-
fication system. This functional then allows for the development of a cogent definition of
what is fusion (.e., the difference between fusion rules, which do not have a reliance upon
any qualitative difference between the ‘new’ fused result and the ‘old’ non-fused result)
and what we term fusors (a subcategory of fusion rules), which do rely upon the qualita-
tive differences. While the development of some classification systems require knowledge
of class conditional probability density functions, others do not. A testing organization
would not reveal the exact test scenario to those proposing different classification systems
a priori the test. Therefore, even those systems relying upon class conditional density
knowledge a priori can at best estimate the test scenario (and by extension the operational

conditions the system will find itself used in later!).

The functional we propose allows a researcher (or tester) who is competing classifi-
cation systems to evaluate their performance. Each system generates a ROC or a ROC
curve based on the test scenario. The desired scenario of the test organization may be ex-
amined under a range of assumptions (without actually retesting), and functional averages
can be observed as well, so performance can be compared over a restricted range of as-
sumed cost functions and prior probabilities. The result is a sound mathematical approach
to comparing classification systems. The functional is scalable to any finite number of
classes (the classical detection problem being two classes), with the development of ROC
manifolds of dimensiom > 3. The functional will operate on discrete ROC points in the
n-dimensional ROC space as well. Ultimately, we will be able under certain assumptions
and constraints, to compete families of classification systems, fusion rules, fusors, and
fused families of classification systems in order to choose the best from among finitely

many competitors.
The relationships between ROCs, ROC curves, and performance has been studied for

some time, and some properties are well known. The foundations for two-class label sets

can be reviewed in [10, 14,17, 30, 34,36,41,45]. The method of discovery of these prop-



erties are different from our own. Previously, the conditional class density functions were
assumed to be known, and differential calculus was applied to demonstrate certain prop-
erties. For example, for likelihood-based classification systems, the fact that the slope of
a ROC curve at a point actually is the likelihood ratio which produces this point, seems
to have been discovered in this manner [14]. Using cost functions in relation to ROC
curves to analyze best performance has recently (2001) been recognized by Provost and
Foster [42], based on work previously published by [17, 36,48]. The main assumption
in most of the cited work, with regard to ROC curve properties, is that the distribution
functions of the conditional class densities are known and differentiable with respect to
the likelihood ratio (as a parameter). We take the approach that, as a beginning for the
theory, we have ROC manifolds that are continuous and differentiable, but we apply vari-
ational calculus to a weighted distance functional on a specific family of manifolds, which
has the effect of identifying the point on the ROC manifold which minimizes Bayes Cost.
Under any particular assumption on prior probabilities and costs associated with errors in
classification, such a point exists for every family of classification systems. This is not
to say the classification system is Bayes Optimal with respect to all possible classifica-
tion systems, but rather it is Bayes optimal with respect to the elements of the family of
classification systems producing the ROC manifold. We believe this functional (which is
really a family of functionals for each finite number of classes considered) eliminates the
need to discuss classification system performance in terms of area under the ROC curve
(AUC), which is so prevalently used in the medical community, or volume under the ROC
surface (VUS) [12, 37], since these performance ‘metrics’ do nothing to describe a classi-
fication system’s value under a specific cost-prior assumption. Any classification system
used will be set at a particular threshold (at any one time), and so its performance will
be measured by only one point on the ROC curve. The question is “What threshold will
the user choose?” We submit that this performance can be calculated very quickly under
the test conditions desired (using ROC manifolds) by applying vector space methods to

the knowledge revealed by the calculus of variations approach. Additionally, the novelty



of this proposal also relies on the fact that no class conditional densities are assumed (by
the tester), and that the parameters of the functional can be chosen to reflect the desired
operational assumptions of interest to the tester. For example, the tester could establish
that Neyman-Pearson criteria will form the data of the functional, or maybe to minimize

a Bayes cost functional, the tester may wish to examine performance under a range of
hypotheses. Once the data are established, the functional will induce a partial ordering
on the category of fusion rules, fusors, and ultimately the set of families of classifica-
tion systems. This partial ordering is a category in itself, but is also used to provide a
mathematical definition of a fusor, which is derived from the fusion rules, and embodies
mathematically the qualitativeness desired by researchers according to the application of
the problem to which they are engaged. In other words, we have put to paper the defini-
tion of what makes a fusion rule based classification system “better” than the classification
systems from which it was derived. An illustrative example and further applications of
the functionals, with consideration of robustness, are put forth in the final section of this

dissertation.

1.2 Literature Review

Our literature review consisted of three main areas: information or data fusion, cat-
egory theorywith data fusion, and ROC analysis. We were interested in how other re-
searchers discussed and communicated their ideas of fusion, and in particular, whether
mathematical descriptions of the overall fusion process are used (and not just a particular
technique). Our decision to use category theory as the mathematical language prompted a
search for the application of category theory to the science of information fusion. Finally,
how do researchers ensure their results have the quality required to actually call what they
are doing fusion? We decided to explore the world of ROC analysis since every classifi-
cation system can generate at least one ROC, and this seemed a reasonable place to look
for the type of functions (or functionals) which would be useful to provide a definition for

quality of a particular fusion rule.



1.2.1 Data Fusion. As late as 1999, Dr. Wald in [54] described the challenges in
the science of data fusion, posed by not having a language with common terms. These
challenges are readily seen in the early results of the JDL definitions, where the language
of what fusion was consisted of combining, integrating, estimating, predicting, scheduling,
optimizing, and more! The earlier Handbook of Data Fusion [15] had this definition of
fusion (from the JDL Data Fusion Lexicon):

A process dealing with the association, correlation, and combination of data
and information from single and multiple sources to achieve refined position
and identity estimates, and complete and timely assessments of situations and
threats, and their significance. The process is characterized by continuous re-
finements of its estimates and assessments, and the evaluation of the need for

additional sources, or modification of the process itself, to achieve improved
results.

This definition was pruned in [15] to be:

Data fusion is the process of combining data or information to estimate or
predict entity states.

Dr. Wald correctly identified some of the problems and expressed the desire to have a

more suitable definition with the following principles:

e The definition should not be restricted to data output from sensors alone;
e It should not be based on the semantic levels of the information;
e It should not be restricted to methods and techniques;

e It should not be restricted to particular system architectures.

He then went on to write a definition, “data fusion is a formal framework in which are
expressed means and tools for the alliance of data originating from different sources. It
aims at obtaining information of greater quality; the exact definition of 'greater quality’

will depend upon the application.”
Here we have two definitions, which are very close, but still at odds. The first does
not require a formal framework, which the second does, and also throws in the purpose for

the fusion, but no necessity of the quality of the information (at least not explicitly stated).



The second requires tools for the alliance of data from different sources (without defining
what is different about them), states the purpose much better, and allows the quality of the

improvements to rest with the body of research. This 'greater quality’ is still not defined.

While these two works focus on definitions, the vast majority of other data fusion
papers and books focus on the use of particular mathematical techniques. Each author
shows the cases in which his technique is optimal (see for example [6, 23, 24]), and com-
pares against a single parameter, such as probability of detection, or uses a ROC curve. In
those cases where ROC curves can be shown to be dominant in the compared technique,
the fusion rule is proven, but in cases where ROC curves cross this comparison is not
possible without further elaboration and theory development. Performance evaluation is
also a concern in [33], where the usdamfbormation measures of effectiveness (MOd&s)
discussed. The focus here is on multisource-multitarget statistics, referred to as FISST
(finite set statistics). The use of information theory measurements are used, such as the
Kullback-Liebler cross entropy or discrimination. The use of these measures seems to
only pertain to the signal level of the classification system. In particular, the Kullback-
Liebler discrimination uses the probability distribution associated with ground truth and
the random variable representing a sensor system. Since we will show the classification
system is a random variable made up sensors, processors, and classifiers, the information
theory approach is useful for the development of better sensors (and possibly processors).
The drawbacks are that it does not respect Bayesian principles, in that it does not allow
for testing of different prior probabilities and costs. In the cases which they seem to be a
good measurement, the label sets are simply the two-class case of classification systems.
Extending the distribution functions to a joint distribution functiorkaflasses will prove
to be very cumbersome to the researcher. We admit the connections between the infor-
mation theory measurements and the classification system measurements of probabilities

of error need to be formally explored, but this is beyond the scope of this dissertation.

1.2.2 Category Theory and Fusion. Literature in the area of Category Theory

and Fusion is very limited. There are only a few authors that have attempted to use
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Figure 1.1:  The Joint Directors of Laboratories Functional Model of Data Fusion [15].

the mathematics in this sense [7,25-27]. Each of these works relies upon the use of
formal systems, or systems constructed from first predicate logic. These are systems a
computer can understand through the writing of software. These constructions require
that theories can be written, using symbolic logic, which completely describe the target
classes of interest. Also required are models of the environment, which incorporate these
theories. The categories are actually categories whose objects are specifications (from the
computer language Slafgoy Specware). Each specification consists of a collection of
pairs of theories and signatures (languages). The arrows of the category are mappings
(not in the sense of functions) changing one specification into another, so that identities
are clearly defined. In these papers fusion is an “operator” which returns the colimit of
the objects. This turns out to be the disjoint union of the theories and languages. The
operation is subject to a constraint that maintains the consistency of the category. We will
show, as an example, after our development of a fusion definition, how this construction

fits into our view.



Another set of interesting papers of category theory application has been written by
Dr. M. J. Healy [19-22] of Boeing. Healy puts forth the notion of a cateddeur of
neural networks. The objects of this category are the nodes of the neural net, and the
arrows are the primed paths (the identity arrows being clear). Composition is the usual
composition of arrows, so that if one path is primed and a second is primed from the range
of the first, then there is a primed path from the domain of the first to the range of the
second. He then asserts that memories are the colimits of primed paths in [19]. Colimits,
functors, and natural transformations in a different category show the shortcomings of
adaptive resonance theory (ART) networks [22]. Colimits again play a pivotal role in [20],
which expands the previous work, by enabling a new categonc of concepts, which is
like Kokar’s work in that it relies upon theories and predicate logic, and defining functors

betweenConcandNeur.

With all these works pointing towards creating categories which then depend on col-
imits as their fusion, is it then true that colimits are the definition of fusion we’re looking

for? We don’t think so based on the following:

¢ while colimits are optimal in an algebraic sense, there are still classification parame-
ters to be considered. For example, just because a colimit can be calculated, doesn’t
equate to the new classification being correct! There is the possibility that error in
the original data has skewed the colimit to producing something which performs
worse than one of the systems we started with, thus ignoring the desired qualitative

aspect to fusion we’re looking for.

¢ the colimits developed were specific to formal methods used in designing computer
systems. They are not applicable to other systems designed in different ways. Ac-
cording to Dr. Wald, then, this requires a particular system architecture; therefore,

we cannot define fusion based on these cases alone.

1.2.3 ROC Analysis. Receiver Operating Characteristics (ROCSs) play a signifi-

cant role in determining the performance of classification systems. They have been used



extensively in the medical and psychological communities with regard to imaging and di-
agnoses [14,48]. The definitions of ROCs and ROC curves and manifolds are presented
in Section 2.2. There are in general two ways to look at the analysis of ROCs. The first
is to consider an entire family of classification systems which create a ROC curve or man-
ifold. The second is to consider that each classification system creates a ROC, that there
are particular families of these classifications which can be constructed with meaning, and
that there is a Bayesian interpretation of their significance with respect to the problem of

classification.

We explore the first viewpoint by noting that in two-class problems, the ROC curve
is an entity in two space, the basis of which is two error axes. Thus, the ROC curve can
be used to calculate certain statistical properties of the original family of classification
systems. One such measurement is the area under the ROC curve (AUC). The area under

the ROC curve has been described in a couple of different ways:

e Given two instances of data, one from each of the two populations, the AUC is the
probability of the system correctly identifying the class of each instance of data
[14].

e The more general view is that AUC is a measure of how well a family of classifica-

tion systems separate the conditional class distribution functions of the two classes.

We will point out that the emphasis on the family of classification systems is ours. Gen-
erally, researchers have regarded these curves as being derived from a single classification
system. This is an incorrect view of the problem of ROC analysis. It is recognized
that to generate a curve or a manifold, a parameter (which is possibly multi-dimensional)
must be varied. This changes the classification system, so that it does not have the same

performance as the original one.

The AUC is, in general, the measurement sought after by many researchers, and re-
searchers have gone out of their way to estimate it by many means. These means include
calculating the ROC convex hull (ROCCH) [41,42], the Mann-Whitney test, and the Gini

coefficient [16]. These efforts are based on the belief that the AUC divorces the problem

10



from finding out the costs involved in making the errors the ROC measures and in know-
ing the relative ratios of the classes in question. In other words, by using the AUC and
the associated estimates, one does not need to concern oneself with prior probabilities and
the costs of making certain errors in classification. We show in Section 4.3 that this is
not the case. When one believes the AUC or any other measure based on ROCs (such as
the Neyman-Pearson criterion) has divorced the problem from assuming particular costs

and/or prior probabilities, one is deceived.

The second viewpoint is present in the works of [2,3,41,42]. This viewpoint provides
a way of working with prior probabilities and costs. It is the more valid viewpoint in our
opinion, based on our theoretical developments. This is due to the fact that the problem of
optimizing the ability to discriminate between multiple classes ig@imizationproblem
with assumptions and constraints, not just a statistical problem. One cannot divorce
the problem from the inherent prior probabilities and costs precisely because when you
establiskanycriterion by which to make the discriminations, attached to it is an underlying
cost-prior ratio, which is now simply hidden, so that one cannot escape from facing the

costs and the prior probabilities of the problem. This is most clearly laid out in [40].

The problem is certainly expanded when one considers multiple class problems (prob-
lems where the classes in question number greater than two). A few papers have been
written concerning this. In [16], the first viewpoint is used, and statistical estimates are
developed to compare families of classification systems. In our view, this will lead to the
selection of classification systems that are suboptimal to the problems where some knowl-
edge regarding costs and prior probabilities exist. Also, we do not explore the inherently
statistical nature of the work.

In [37], three classes, all mutually exclusive, are analyzed, and Volume Under the
Curve (VUC) is explored as a measure of how well a family of classification systems per-
forms. We have the same criticisms regarding the significance of this measure; however,
the paper goes further, at least, in describing the geometry on which such a construct re-

lies. There is no discrimination between the types of errors committed, since the axes

11



developed are each based on correct identifications, and not incorrect identifications. We
show later that fok classes there are — k error axes required for a full ROC manifold
development and that only if errors within types have identical costs associated with them
can we project the problem infodimensions (so that f@ classes you neetldimensions

for a full ROC manifold, but could project intd dimensions only if the errors within

classes have identical costs).

The authors’ [41,42] show the greatest amount of promise in the field, by focusing on
the optimization of costs. Itis well known that if one considers a ROC curve as a function,
with the independent variable being the false positive and the dependent variable the true
positive, then under a mild assumption of smoothness, the ROC curve is differentiable,
and one can show that to minimize the Bayes Cost function with two classes, one needs to
find the point on the ROC curve which has a particular cost-prior ratio as a derivative. The
only paper we found with a “proof” of this was [36], in which he claims the result can be
shown. His own analysis fails to prove the achieved critical points are always a minimum.
In fact, since the second derivative test is inconclusive, one must use the first derivative
test to prove the minimum. The first derivative test is not available to us in the case of
multivariate problems. We use calculus of variations and the global optimization theory
of vector space methods to prove this not just for ROC curves, but we have extended
the method to prove it for ROC manifolds, so that problems of multiple classes can be
analyzed using the Bayesian methods. Our method involves only the geometry of the ROC
manifold in ROC space, along with the same cost function (examined as the functional
in Chapter V).

Much use is made in [41,42] of the ROCCH. The usefulness of the ROCCH is ap-
parent when one considers creating randomized decision rules from previously created
families of classification systems. When two classification systems overlap, one can con-
sider the ROCCH as a solution to which classification system to choose, since the ROCCH
can be created under a convex combination of selecting probabilistically one family or the

other. We show, however, that with respect to a particular cost-prior assumption, no ben-
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efit is gained by doing this, since under these assumptions no greater cost benefit can be
achieved along the extension of the convex hull than there is at the endpoints (which al-
ready exist). Under the first viewpoint, there is a benefit. That is the direct increase in
the area under the curve, so that by randomly selecting the family from which to choose,
one may increase the overall ability to separate the conditional class distribution functions,
associated with the classification families. Similarly, in [12], the search is on to construct
the convex polytope associated with three class (anlhss) problems. The authors use

the “trivial” classification systems to construct the best estimate of the convex polytope,

but they also recognize the efforts of [37] and [16] in their approach.

ROCs also have an inherent application to detection problems involving electronics
(thus the “receiver” in receiver operating characteristics). This history and analysis can
be found in textbooks, particularly in [10, 30, 34,45]. The emphasis in these texts are
towards the development of classification systems and not the performance evaluation
from ROCs only. In some respects the developments in these texts overlap with our
development, but from the opposite approach. There are also some errors made in the
texts, which are not apparent until you really dive into some of the analysis with respect
to risk sets (particularly the min-max example in [45]). We need to point out two things
with respect to this. First, our optimization is significantly different in its characterization
of the problem. We use calculus of variations and properties of linear transformations to
establish our optimization problem and we pick up on some differences that we feel are
very important. Secondly, there is no connection to information fusion or category theory
given in these texts. So our application is certainly new and independent and extends
the field of knowledge. Overall, we believe our review to be sufficient to look into the
use of ROCs, ROC curves, and ROC manifolds in order to produce a theory which is
satisfactory to discriminating the performance of one classification system over another,
or one family of classification systems over another. If an objective function can be

produced on ROCs, ROC curves, and ROC manifolds, then we can define the qualitative
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nature of fusion according to each application (that is, which fusion rules are better than

the original classification systems, and which fusion rules are superior to others).
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II. Background

2.1 Mathematical Formalisms and Definitions

This work is inherently an applied math dissertation. As such, the background ma-
terial required in order to understand it is drawn from the areas of Topology, Category
Theory, Probability Theory (measure-theoretic in scope), and some vector space knowl-
edge. We assume a basic knowledge of vector spaces is understood by the reader, but
certain useful definitions and theorems are stated concisely in this section to facilitate the
readers understanding. Definitions of receiver operating characteristics (ROCs), ROC
curves, and ROC manifolds are also given, along with a couple of convergence theorems
useful to understanding the context of why ROC analysis has drawn such attention from

researchers.

2.1.1 Topology Formalisms and Definitions.

Definition 1 (Preimage). Let f be a function withX the domain off andY the range.

Then givenB C Y, we denote the preimage 8fover f by f%(B), where
fAB)={reX : flx)e BCY}. (2.1)

The symbol is the natural symbol from music literature (also known as the becuadro) and
is used precisely because we do not want to confuse the preimage of a set over a function

with the inverse of the function, which is denotedfas.

Definition 2 (Topology, Topological Space [38])A topology T on a setX is a collection

of subsets of such that:

i. X,0er.
ii. Arbitrary collections of sets of have their unions in.

iii. Finite collections of sets af have their intersections in
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The sets contained in are called the open sets &f. We say(X, 7) is a topological

space.

Example 1. Here is an example from [38]. Given a s€t with an order relatior<, and

a,b € X, the following types of sets are in the topology:

1. (a,b)={z | a <z <b};
2. [ag,b) = {x | ap < x < b}, whereq, is the smallest element of (if one exists);
3. (a,bp) = {x | a <x <by}, whereb is the largest element of (if one exists);

The collection% of such sets for alk, b € X is theorder topology on X .

Definition 3 (Hausdorff Space). A topological spacé X, ) is a Hausdorff space if for
any two elements, x5, € X with x; # x5, there exists open set§ V' € 7 such that
z1 €U andzy, € V,withUnNV = 0.

Example 2. The set of real number&, with the Euclidean metric of distance between

two points, is an example of an Hausdorff Space.

Definition 4 (Metric, Metric Space). Let X be aset. Thenfor,y, z € X, if there exists

a functiond, such thatl : X x X — R*, which satisfies the conditions:

i. d(z,y) > 0 (non-negativity);

ii. d(xz,y) =0 iff z =y (positive definiteness);
iii. d(z,y) = d(y,x) (Symmetry);

iv. d(x,y) <d(z,z)+ d(z,y) (triangle inequality);

thend is a metric. We cal( X, d) a metric space, though the notation is often suppressed

to simply X.

Example 3. The Euclidean metric of distance, giveny € X, d(z,y) = |zt —y|is a
metric. Every Euclidean metric induces a topology as well, since open sets can be defined
in terms of Euclidean distance, and a basis for such topologies can easily be formed using

open balls inX.
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Definition 5 (Open Ball in R™). An open ball inR™ relative to a metrid is written3(z; r)

where there is no misunderstanding of the metric. The meaning of the open ball is
B(z;r) ={y e R" | d(z,y) <r},

wherez € R" is the center of the ball with its radius.

Example 4. Let (R, d) be a metric space. Then fer> 0 andx € R,

B(w;e) ={y : d(v,y) < ¢}

forms an open ball ifR.

Definition 6 (m-Manifold [38]). Letm € N be given. A topological spadgeX, 7) is an
m-Manifold if it is a Hausdorff space and has a countable basis such that each neighbor-

hood of a pointz; € X is homeomorphic with an open subsefi.

Example 5. In R", n > 3, al-manifold is a curve, @-manifold is a surface, etc.

2.1.2 Probability Theory Formalisms and Definitions.Necessary to reading this
dissertation is a common frame of reference with regard to category theory and probability
theory. We will start with the latter and the reader can always familiarize himself with [5]

for probability theory, or [43, 44] for elementary measure theory.

Definition 7 (Algebra or Field of Sets). Let X be an arbitrary set. A collectio#® of

subsets ofX is an algebra or a field if it satisfies three properties:

. X e A

ii. ForanyB € %, we have the set complemefi) B, written B, also in4.

iii. Given the finite collectiod B; € # : i =1,2,...,n € N}, thenU B; € A.

=1
Definition 8 (c-algebra or o-field). Let X be an arbitrary set. A collection of subsets,

A, of X is ac-algebra, ow-field, on X if & satisfies three properties:
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. X e A

i. ForanyB e %, we haveB is also in4.
iii. Given the countably infinite collectiopB; € 4 : i =1,2,...}, thenU B; € #.
i=1

We can see that@-field is a field of sets as well.
Example 6. Given a setX, the power set ok, (X)), is ac-field.

Definition 9 (Positive Measure).Let X be a set andZ be ac-field over X, then any
set functionv defined onZ with rangeR |0, o] is called a positive measure dnif it is
countably additive. That is, given a disjoint, countable collectidi3; }5°,, of sets in%,

then

Example 7. See [43] for the definition of outer measure Bn Outer measure returns

lengths of intervals ofR, so that outer measure is a positive measur.on

Definition 10 (Sample Space)Given a complexX® of conditions, which allows any num-

ber of repetitions (an experiment, for example), there is a collection of elementary events,
¢,6,¢, ..., not necessarily countable, which is called the sample space, and will be de-
noted ag [28].

Example 8. An example of a complex of conditiorisis “the tossing of a coin”, while

the sample spade = {h,t}, whereh is the event of getting a “head” as a result, arlde

event of getting a “tail”. Ifl" is “the tossing of a coin two times”, then

Q ={h,h,h,t,t ht t}isthe sample space. Ifthe ev@nimplies that a tail results, then

any of the last three elementary event$idias occurred. The complex of conditions will
usually be described using language in order to identify meaning. This language then
leads to the formation of the sample space andstifield so that a probability measure

can be defined. All probabilistic mathematical language for the given problem flows from

this beginning.
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A o-field, 4, can be developed dn, so that the paif(2, %) is a measurable space.

Given a positive measugeon (2, #) , the triple(Q2, %, 11) is called a measure space.

Definition 11 (Measurable Function). Let (X, %) be a measurable space aidr) be
a topological space. A functiofi is called measurable if for each € 7, we have
that the preimage off under f, denotedf*(E), is also an element o¥4. We call f a

Z-measurable function.

Example 9. Let ;1 be Lesbegue measure Bn Consider any continuous functigiwith
compact support. Since the preimage of an open set is open for continuous functions,
and open sets are always contained in the Befiéld, we have that these functions are

measurable.

Definition 12 (Finite, o-Finite Measures). If u(Q2) < oo, theny is a finite measure.

A measurey is o-finite if there exists a sequende,} of elements of# such that

Q= U B, andu(Bn) < oo for eachn € N. Finite measures are cleadyfinite as well.
n=1

Example 10. Lesbegue measugeon R is an example of a-finite measure. Consider
the countable balls with radius> 0 and centers € Q. The union of these balls R,

while the measure of each ball is finite.

Definition 13 (Probability Measure, Probability Space [49]). Given a measurable space
(Q, %), a positive measure with (Q2) = 1 is defined as a probability measure. A prob-
ability measure is a finite measure and therefosefamite measure as well. The measure
space(2, %, 1) is called a probability space.

Notice how the properties of the definitions flow:

SinceQ) € A, then) € B. Therefore, since,(2) = u(Q U (), we have
by the definition of a positive measure the property of countable additivity, so
thatu(Q2) = u(2) + wu(0). Sincew(Q?) = 1, we have that

L=1+p(0),

so thatu(0) = 0

. Furthermore, for anys € %, we have) < u(B) <1,and
sinceu () = u(B)

+ u(B) we have that
1 - u(B) = p(B).
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Definition 14 (Bayes Theorem).Given a probability spac&?, %4, 1), andB,, By € 4,

the conditional probability of3; given B, is written

pw(B1 N By)
P(By|By) = ————=.
(51l 52) 11(B2)
With this in mind, Bayes Theorem states
P(Bi|By)p(Bz) = P(Ba|B1)u(Bh), (2.2)
so that
_ 1(B1)
P(Bi|By) = p S P(Bal By) (2.3)

The notation is written to emphasize thais not a measure, but rather given an evént
thenP(-| By) is a measure which is related to the meagubg the definition. We refer to

the left hand side of the equation as the conditional probability of the éegitven event

B; has occurred, while the conditional probability on the right-hand side of the equation
is referred to as the posterior probability. Each real numiiér ) andp(B,) is a prior

probability.

Definition 15 (Random Variable). Given a probability spacg?, 4, 1) and a measurable
space((2, %), we sayf : Q@ — () is a random variable if*(E) € % for eachE € A.

We sayf is an{2-valued random variable.

Note: It is true that ad-valued, measurable function,: 2 — &, is a®-valued ran-
dom variable for any topological spate, ), since there always exists a smalledield
containing the elements af[44]. The specific language “random variable”, without the

hyphenated prefix, is reserved for the case when R.

Definition 16 (Stochastic Process [9])Let (€2, %, 1) be a probability space artél a set
of parameters which may be finite, countably infinite, or uncountable. Then a family of
random variables indexed I8y, X = { X, : 6 € O} is a stochastic process.df is count-

ably infinite or finite, thenX is adiscrete parameter process. If © is a continuous
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parameter, theX is acontinuous parameter process. If we fix w € 2, and allowd
to vary, then the functiotk . (w) is a sample function whe@ is uncountable. Whe8 is

countable or finite, theX . (w) is a sample sequence.

2.1.3 Category Theory. This section draws upon definitions contained in [53].
Category theory is a branch of mathematics useful for determining universal properties
of objects. The science of information fusion does not yet know of all the relationships
involved between the classes of data and the mappings from one type of data to another.
It has been our goal to try to engage the community to think in terms of generalities when
studying fusion processes in order to abstract the processes and perhaps gain some clarity
of thought, if not genuine insight. We have drawn upon the work of various authors in

Category Theory literature [1, 29, 32, 35] to present the definitions.

Definition 17 (Category). A categoryC is denoted as &-tuple,
C= <Ob(C), Ar(C),1d(C), o),

and consists of the following:

Al. A class of objects denotddb(C), so objectOD € Ob(C).

A2. A class of arrows denotedir(C), so arrowf € Ar(C).

A3. Two mappings, called Domaini¢m) and Codomaindod), which assign to an ar-
row f € Ar(C) a domain and codomain from the objects@b(C). Thus, for
arrow f € Ar(C), there exist object®); = dom(f) andO, = cod(f) and we

represent the arrow by the diagram
0,—1~0,.

A4. A mapping assigning each objedte Ob(C) an unique arrow € Id(C) called
the identity arrow, such that

1o

O——=0
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and such that for any existing elementof O, we have that

lo
rH———x.

A5. A binary mapping,o , called composition,Ar(C) x Ar(C) — Ar(C). Thus,
given f, g € Ar(C) with cod(f) = dom(g) there exists an unique € Ar(C) such
thath = go f.

Axioms A3-A5 lead to the associative and identity rules:

e Associative Rule Given appropriately defined arrowfsg, andh € Ar(C) we

have that
(fog)oh=fo(goh).

e Identity Rule. Given arrows A AN B and B —2= A, then there exists arrow

14 €ld(C)suchthatiyog=gandfol,y=f.

Definition 18 (Subcategory).A subcategorys of A is a category whose objects are some
of the objects of4, i.e.,Ob(B) C Ob(.A), and whose arrows are some of the arrows of
A, i.e.,Ar(B) C Ar(A), such that for each arroW € Ar (), dom(f) andcod(f) are in
Ob(B), along with each composition of arrows, and an identity arrow for each element of
Ob(B).

Definition 19 (Discrete Category).A discrete category is a category whose only arrows

are identity arrows, i.eAr (C) =1d(C) .

Definition 20 (Small Category). A category C is called 8mall Categorywhen the class
Ob(C) is a set.

Note: A historical note on this is that while in this paper and in many works, the only
categories considered are small categories, category theorists are proposing an axiomatic
replacement for set theory as a mathematical foundation. In other words, all mathematical
properties can be shown using an axiomatic category theory rather than the Zermelo-

Fraenkel axioms for set theory. The belief is that the category theory approach will avoid
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certain paradoxes which creep up in set theory, such as “the set whose members are not in

a set”.

Definition 21 (Functor). A functor § between two categorie4 andB is a pair of maps

(Sob, SAr)
Ob(A) 22 Ob(B)

Ar(A) Sar, Ar(B)
such thaf mapsOb(.A) to Ob(B) andAr(.A) to Ar(B3) while preserving the associative
property of the composition map and preserving identity maps.
Thus, given categoried, B and functorg : A —— B ,if A € Ob(A) andf, g, h, 15 €
Ar(A) such thatf o g = h is defined, then there exisks € Ob(B) and f’, ¢, k', 15 €
Ar(B) such that

) Son(A) =B.

i) Sar(f) =1, Sarlg) =7
i) W' =Far(h) =Far(fog) = Far(f) o Farlg) = fog.
V) Far(la) = lgou(a) = La.

We denote a functag between categoried andB with the diagram

A-2-8.

Example 11. An elementary example of a functor is the forgetful functor. G&P be

the category of groups which has as objects groups and as arrows morphisms between
groups. LetZ (G) denote the underlying set of elements of a given group G. Then the
forgetful functor,§, maps groups to their underlying sets, and all arrows to the identity

arrow on the underlying set.

Definition 22 (Natural Transformation). Given categoriesd and5 and functorsg and

G with A s, B and A—2- B , then aNatural Transformation is a family of arrows
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v ={va : A€ Ob(A)} such that for eaclf € Ar(A), A—Ten A€ Ob(A), the
square diagram

A F(A)=6(A)

fJ/ S(f)l iQi(f)

A ) e

commutes. We say the arrowg are the components of
vV:§—&,

and callv the natural transformation gfto @.

Example 12. This example is from [32]. LeCRng be the category of commutative
rings, andGL,,(-) be the category of general linear groups, which consists of alln
invertible matrices over commutative riig. The determinant of the matrices is a natural
transformation (since the matrices are calculated with the same formula regardless of the
ring used) making the following square commuté*( K"* are rings with their additive
identity removed, so that all of the elements are invertible, and therefore they are objects
of the categornfGRP.):

DetK

K GL,(K) K*
f GLn(f) fr
K GL,(K') _Deter K

This says that for every morphisnf, of commutative rings, the determinant is natural

among functorCRng — GRP.

Definition 23 (Functor Category .A%). Given categoriesd andB, the notation4? rep-
resents the category of all functogssuch that 3 —S. 4. This category has all such

functors as objects and the natural transformations between them as arrows. We can also
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have that given objectd € OB(A) and B € OB(B), there exists functor categories

denoted as!?, AZ, andA® as well.

Definition 24 (Product Category). Let {C;}!_, be a finite collection of small categories.

Then the cartesian product

[[c=cixcx---xc,
1=1

forms a category called the product category. For éaechOb ( H CZ-) , then
i=1

O =(01,04,...,0,) whereO; € Ob(C;) fori = 1,2,...,n. For each arrowf <
Ar (Hcl) thenf = (fi, fo,..., fn) Wheref; € Ar(C;) fori = 1,2,...,n. Given
=1

arrowsf,g € Ar (H CZ) , then the composition of these arrows mean
=1

fog=(fiog, fa0092,...,fnogn)
2.1.3.1 Category Examples. Some examples of categories are:

Example 13. The category of all Abelian Group&b. Here the objects are abelian groups

and the arrows are all morphisms from one Abelian Group to another.

Example 14. The categoryBan of Banach Spaces. Here the objects are Banach Spaces,

and the arrows are all bounded linear transformations between them.

Example 15. The categoryecty of finite-dimensional Vector Spaces over the fi&ld

The objects are finite vector spaces and the arrows are all linear transformations between

them.

Example 16. The categonSET, a small category whose objects are sets and arrows are

the total functions between them.

Example 17. The categoryCAT, a small category whose objects are small categories

and arrows are the functors between them.
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Some examples of functors are:

Example 18.§ : Ab — SET, which is the forgetful functor which simply maps all non-
identity arrows in the categob which map from an object to the identity arrow of that

object, now considered as a set only within the cate @&y, rather than a group.

Example 19. & : Ban(X) — Set the functor mapping all subspaces of a Banach space
X to their respective subsets. Non-identity arrows are mapped to identity arrows, so this

functor is also a "forgetful” functor.

2.2 Receiver Operating Characteristic (ROC) Background

2.2.1 Definition of ROC curve. Let (2, &, 1) be a probability spacé, be a two-
class label setl. = {/;,¢,}, and letX(¢,-) : © — L be a discrete random variable
indexed by gparameter setT, wheret € T is a parameter, antl might be uncountable
and multidimensional. We will refer to the sample functiy(-) = X (t, -) as a classifier
of members of4. Usually, T is homeomorphic to some subsetRif for somem € N.
We assumé) can be partitioned into two sets of events{se- 2; U €25, where the first
set(); corresponds to the labé], and the second to the lab&l. Thus,Q; N Qy = 0
is assumed. Under the assumption of only two labels, we will assumd tisaa one-
dimensional parameter space.

Each classifieX; can make a mistake in classification. There are two types of errors
it can make. It can assign objects in class 1 to ldbebr it can assign objects in class 2
to label?;. Let X?(¢;) denote the pre-image of the labfelunder classifiefX (¢,-). We

can construct the two conditional probabilities of a classifier making these errors as

(X7 (01) N Q)
1(§2)

and

(2.5)
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wherey(€2;) and (2, ) are the prior probabilities of their respective events ancgthe )
for i,7 = 1,2 are the conditional class probabilities of classifying an evert aghen
event/; has occured. Two conjuctive, conditional class probabilities, constructed in the

same manner, form the following relationships [11]:
P1j2(t) + popp(t) =1 (2.6)

po(t) +pup(t) =1 (2.7)

For a specifi¢ € T, the ordered pailpy»(t), p1(t)) is called the receiver operating
characteristic (ROC) of classifie¥ (¢, -), when the dependent class(ls. We will use
the notation(p2(t), popi (t)) as the ROC, however, to better accommodate our description
of then-class problem. A set = {X(¢,-) : t € T} is called a family of classification

systems (alternatively, a classifier family). We say the set of triples formég by

fx = {tp1p(t),pn(t) : t€T,Q =0, UQ}

forms a ROC trajectory, when it is lower semi-continuous and monotonic, non-increasing

(see [9] regarding distribution function properties for comparison). We say the set

Fx = {(app(t), pop (1)) - t €T, Q= U}, (2.8)

which is the projection ofx from the spac@& x R[0, 1]2 into the spac&[0, 1], is the ROC
curve of family of classification systen¥§ when its closure has endpoints in the compact
intervalR[0, 1], and it is lower semi-continuous, and monotonic non-increasing. We also
call the ROC curve the ROC manifold (technically, a RO@anifold, see Lemma 2.2.2),
since this curve is homeomorphicl®d for every open ball on the curve and it is a Haus-

dorff space.
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Figure 2.1: A Typical ROC Curve from Two Normal Distributions

Definition 25 (Proper ROC Curve [4]). Given a metric spacd , d) and a (one-dimensional)
parameter € T, a continuous ROC curvg, as defined in Equation 2.8 is called a proper

ROC curve when

L. lim (poy(8), pria(£)) = (0, 1).
2. 1im (pap (), prp()) = (1,0).
Typically, ROC curves are graphed usifg (t), p11(t)) as coordinate pairs , producing
a curve from(0,0) to (1,1). For multi-class problems (greater than two classes), this is

not the best visualization scheme to follow.

2.2.2 ROC Space. Many publications refer to the real set prodi®f0, 1]) x
R([0,1]) as ROC space. This terminology is unfortunate siR¢@, 1)) is not a ‘space’
in the sense of a linear space. We clarify here that by the term ROC space we mean
the topological subspad®&?([0, 1]), 7) of (R?, 7) wherer is the Euclidean topology (the

topology induced by the usual distance metric).

Lemma 1 (ROC 1-Manifold). A proper ROC curve is &-manifold in ROC space.
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Proof: LetS = {(Py:1(Ap), Pip(Ag)) : 0 € ©,Q=0Q; Uy, Ag € A} be aproper ROC
curve, with{Q,Q,} a partition of() into two classes. Let(0) = P1(Ay), y(0) =
Py12(Ap), and letz = x(0),y = y(0) for brevity of notation. Let > 0 be given. The
norm ||-|| is Euclidear2-norm. An open setl in Sis open relative to the usug? topol-

ogy. There is a countable basis for this topology which consists of the open balls of
rational radius- about each coordinate point with rational first component. To sBasv

Hausdorff let(x, y) and(w, z) be two distinct points irs. Then we have that

I(z,y) = (w, 2)[| = 0,

for somed € R. Lety = g Thus we have that

B((x,y);7) N B((w,2);7) =0

are two intersecting open sets containing the two distinct points.

Now let(z,y) € Sbe given. Define a function: B((z,y);e) — B(z;¢) C R* by

gl(z,y)] = z,¥ (z,y) € B((z,y);¢),

WhereB(o; 5) is an open ball of radius with center-. Clearly,g is one-to-one, since for

z € R such thatr = = we have that there exisis € R with g[(z,y2)] = z. Thus, if
(z,y) # (z,y2), then eitherr # = (which is a contradiction) oy # y,. Suppose # ys.
ThenS is not a set representation of a function, which is a contradiction, since this is
implicit in the definition ofS. Therefore x,y) = (z,y2), andg is one-to-one. Thus;

has an inverse;!.

Now, let¢ > 0 be given, withe > ¢ > 0. Then for(zs, y2) € B((z,y); ) such that

1, y) = (22, 92) || <€
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we have that

l9l(z,9)] — gl(z2, )l = |z — 22
< V(@ —22)?+ (y— )’
= |z — 22,y — 1)

= [[(2,y) — (22, 52) ||
< £ (2.9)

so thatg is continuous as well. Since is continuous over every compact subset of
B((z,y);e), g~" is continuous ory(B((xz,y);¢)). Now, there exists an open s€l, C
R[0,1], such thatD C g¢[B((z,y);¢)] andg*(O) = B((z,y);¢). Hence, for allb € O,

g (o) € B((z,y);¢). Since,glg~*(0)] € g(B((x,y);s)) for all o € O, we have that
B((z,y);e) C Sis homeomorphic t&) C R', with

g: B((x,y);e) — O

being the homeomorphism, so ti&is a1-manifold in ROC-space. S
An example is seen in Figure 2.1. This proof can be extended to show that a ROC
surface inn-space is a ROCr — 1)-manifold, the basis of the manifold being the points
on the ROC surface corresponding(tq, o, . . ., ,_1, Z,,) Where the first, — 1 compo-
nents are rational numbers, with being the dependent component, along with rational

radii in an(n — 1)-ball open relative to th&” topology.

2.2.3 ROCn-Space. We will retain the conventional language of ROC space
and offer an extension ta2 dimensions. Suppose we have a multi-class label set (a
label set with more than two labels). To construct a corresponding ROC space, in the
case ofm > 2 labels, we desire to have = m? — m axes, so we will designate this
ROC space as a ROf-space. This is due to the fact that when thererarelasses,

the number of possible types of classifications of the classification systerhasd the
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number of conjunctive conditional probability equationsigwhich also corresponds to
the number of correct classifications), so that therenate- m degrees of freedom left
after the application of the conjunctive equations (instead of the usual fact of contingency
tables allowingn? — 1 degrees of freedom), which we have already seen in the case of
m = 2 with the application of the conjuctive equations in Equations 2.6 and 2.7. So if we
associate a correct classification with theconjunctive equations, then we havé — m
incorrect classifications corresponding to the degrees of freedom, each demanding its own
axis in ROCn-space. If we were to allow all errors to have equal cost, then we can
combine all errors within a class, and we would then have m? — m(m — 1) = m
degrees of freedom, which is the same as the number of classes, each one requiring its
own axis. Whenn = 2, we have that = 2, which results in the typical ROC space of
ROC curves.

In the case of three classes, = 3, as an example, examine the conjunctive condi-
tional probability equations (with notation suppressed with respect to the sample functions

involved),

piptpontp3n = 1
P2+ P22t p32 = 1

pys+ o3+ o33 = 1

fori,j = 1,2,3. This system could be described by a 3 stochastic matrix. Notice that

once the errors of each row are given, the correct classification is completely determined
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by the equation. Additionally, the equations could be rewritten as

popn+p3n = 1—pip
Pz +p32 = 1 —pap
pys +po3 = 1 —p33

so that the ROC space needed to describe the system completely 3sspage due to all
costs being equal (in this case, cost = 1,V ¢, 7). There is a relationship between the
dimensionality of a parameter s€tand the dimensionality of the ROC manifold. Ulti-
mately, we want to construct ROC manifolds which allow a unique optimization point to
be embedded in the manifold, while maintaining independence of the conditional proba-
bilities of n — 1 classes. If

r=dim(T) >n — 1,

then there are several optimal points embedded in the R@@nifold, so that a unique
solution cannot be found analytically. #f < n — 1, then a unique optimization point
embedded in the RO&manifold can be found, but independent control over all of the
conditional probabilities is lost and information corresponding to each class is incomplete.
Therefore, when we refer to RO&space, the ROC manifolds assumed to inhabit it are
ROC (n — 1)-manifolds unless otherwise declared. This means the parameterisgsace
assumed to be of dimension— 1, and this guarantees a unique optimization point with

respect to the assumptions on prior probabilities and costs.

2.2.4 Convergence of Receiver Operating Characteristic (ROC) curveAlbert
Einstein once said, "Not everything that can be counted counts, and not everything that
counts can be counted.” [47] Part of the reason we use ROC curves is due to their inherent
dependency upon probability theory. Some sets have measure (they count, but may not be

countable), and some have none (they don't count, though they may be countable). The
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ROC curve is a graph of tradeoffs of the errors made by families of classification systems.
Virtually all ROC manifolds are estimates of performance and do not meet the theoretical
constraints we have defined. However, Alsing, in his Ph.D. dissertation [4], put forth
a theorem which shows that estimates of ROC curves, created from calculating the true
positive and false positive rates, convergehie ROC curve of a family of classification
systems. We rely upon this convergence when we discuss the theory, because without it,
not much makes sense. Therefore, we refah&oROC curve. Alsing’s proof of ROC

convergence focused on two things:

1. pf(;? (t) are estimates (random variables) which depend upon the actual (he says fi-

nite) data collected during the test.
2. There is a collection of metrics which show, B (t) = (ﬁ’@(t),ﬁ(ﬁ(t)) and
metricd in his collection, that

lim d(ﬁn(t), P(t)) ~0

n—oo

for someP. ThisP is referred to ashe [emphasis mine] ROC curve.

With this proof we can theorize more about the actual underlying ROC curves and compare
the systems they represent without much worry over our goals. After all, if we have a
non-continuous collection of ROC points from a family of classification systems, we can
approximate the underlying continuous ROC curve by connecting the points with straight
lines. We can then imagine a sequence of such ROC cuoregrgingo the ROC curve
in order to talk about where the optimal points on the curve are, and perhaps to compare
one curve generated by a family of classification systems to a finite number of other curves
generated by different families of classification systems.

There are a few problems with Alsing’s approach and proof. First, it relies upon the
assumption of convergence of the sets of finite feature vectors to the sample space. There
are two errors with this statement. First, | believe he means to say that in some way he

can take countably increasing random samples of feature vectors, which are converging
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to the test sample space. This convergence is described as being in the Hausdorff metric.
This is the second error, since although the Hausdorff metric is calculated using the clo-
sure of each set relative to the other, there is no way one can accomplish this with even a
countable collection of random variables. Additionallly, he relies upon ‘balanced’ sam-
ples of clasd and clas® objects of detection. This is unrealistic and unnecessary to the
proof when using the Law of Large Numbers [5]. Therefore, Hausdorff measure is not

a sufficient constraint for the theorem, the sets of random samples need to be constructed
appropriately, and there is no need for these sets to strive for balance if they are truly
random samples. Furthermore, there needs to be a proof showing convergence of ROC
curves when the test sample spaces are a collection of countably increasing nested sample
spaces with the population sample space as the union of the collection. Together these
two proofs would demonstrate that as you increase the number of random samples from
a test sample space, the conditional probabilities (and the ROC manifolds) converge to
the expected values almost surely, and that as you nest your sample spaces in a countably
infinite fashion, your conditional probabilities (and the ROC manifold) converges almost
surely. This is important if you are going to use ROC manifolds from a test as a measure
of performance. Thus, if we set up the test to reflect as accurately as possible the real
world, and we take enough random samples, we can have confidence in using the ROC
curve as a performance characteristic of families of classification systems participating in
the same procedure.

Alsing begins his proof by showing thﬁj@)(-) (my notation, not his) is a consistent
estimator. He shows it is a consistent estimator of the mean. This is true due to the weak
law of large numbers (in his proof he applies Chebyshev’s inequality), so that for each
t € T we have that

plim B[ (t) = mi,, (2.10)

n—oo

for some mean valug;, whereplim denotes the limit in probability. Alsing does not

n—oo

characterize the values ; beyond this olP(-) = <p1|2(-),p1|1(-)> (the ROC curve), and

fails to connect the expected values of his random variables to the actual conditional prob-
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abilities he’s trying to prove his estimates to converge to. Moreover, his collection of
metrics seems to require the measure space’, i) from which we draw the parameter

t be such thau(T) < oo (that is, a finite measure space). This is certainly not correct for
T = R andu being Lebesgue measure. Even the simplest of toy problem$ hag,

so then no positive, translation-invariant measure can be used tolsdalen to a finite

measured set.

Therefore, we offer a proof of convergence that characterizes better the nature of ROC

convergence, and we extend the result to problems with classes great2r than

Theorem 1 (Extension of Alsing’s ROC Convergence, Convergence of ROC mani-
folds). Letk € N be givenm = k* — k. Given denumerable, nested partitions of random
samples, whose union is a sample population, the sequence of ROCl)-manifolds,
constructed from sample functions with parameter@et o-finite measure space, con-

verges to a ROC manifold.

Proof: Let (2, %, 1) be a probability space an®, <7, 1) be ac-finite measure space

of parameters. LefQ;}_, be a partition of into k classes. LeO, € Z for each

neN. LetO, 1 Qasn — 00,i.e,0, C0, C...0, C...CQand| ] O, = Q. For
n=1

eachn let {O,, ;}¥_, be a partition oD, into thek classes. We assunig, ; # () for each
n,j € NandthatO, ; T Q; asn — oo for eachl < j < k. Let
a = min {1*(0; ), 1(Oi;)(0;)}.

0<i<n
1<j<k

Let A be a family of classification systems ©f so that for each parametér € O,

Ag :  — O defines a discretezz-measurable random variable.

Denote byA”e(k) the preimage of clask underAy. Let O, be the sample space
of the nth instantiation of data. Now fi@ € ©, where@ = (6,,0,,...,0;2_;) and let
A = {61,09,...} be a discrete index set. Then for ea@h, we can construct a new
probability space(O,, ;, #,.;, in.j), WhereZ,, ; is ac-field onO,, ;, with #,, ; C %, and

i (B) = Mféf’)j) foreachB € %, ;. LetC;;, = A5(i) N O,
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Now, for eachy, € A, construct the random variable

X0, =1c,,.(),

r

wherel is an indicator function. This random variable essentially tells us whether or
not anw € O,,; is classified as an error or not. Then the expected value of the random

variable is

E{X;'T]} = E{ICi,j,n }

= / ICz‘,j,nd:unJ
On,j

Now let
o(m 1 = 1|7
Py (8) = m > X
r=1

Since{Xé“f]»;fg1 are independent identically distributed random variables, by the strong

Law of Large Numbers [5], we have that

ﬁg?(@) — P(AL(1)|On ;) = ]’5(‘7;)(9) almost surely p as m — oo.

)
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Considemwlog that errorﬁ,@” . Is the dependent variable with respect to the classification

system. Then fixing the parametE © and letting
PU(0) = (557 ((0),557(0), ... 5y (0), ... 51 (8). ... 5™ ). (2.11)
we have that the set ¢0f> — k)-vectors
{P<m>(0) 1 0c @} (2.12)

forms an estimate of the ROC manifold. We assume it is a proper ROC manifold, and that

(@, o7, () is ac-finite measure space. Let
P (9) = (5 (0).557(0), ... (0),... . B1(0), ... 5",) (2.13)

and now consider the product measure (. Thus, by Fubini’'s Theorem [44] we have

that

lim [P (0) — P™(0)]d(1u x ()

m— Jexn

= lim / |[P™(6) — P™(0)] du| d¢
Q

= lim / |P™(6) — P"(0)] d¢| dp
(S)
0,

so thatP™ (9) — P™ (0) almost everywherg x (. o

Next, we offer a continuation of the idea of convergence by now considerinig a ROC
manifold convergence. This convergence is similar to the convergence of distribution
functions with the exceptions that, 1) because ROCs are inherently connected to probabil-

ity measures, any convergence can only be as strong as convergence almost everywhere,
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and 2) the converging sequence of ROCs is constructed by building up smaller probability

spaces into a universal one (universal with respetiiégopulation).

Theorem 2 (ROC Convergence)Letk € N be givenn = k? — k. Given denumer-
able, nested partitions of random samples within denumerable, nested partitions of sam-
ple populations, whose uniontise population, the sequence of R@@ — 1)-manifolds,

constructed from sample functions with parameter&eatonverges to the ROC manifold.

Proof: Let the assumptions be the same and the estimates be the same as the results in
Theorem 1. Leﬁx)(@) — P(A5(i)|0,,) be the estimate of the conditional probability,

pi); (0) = P(A“e(z')mj). Now consider the following two notes:

1. SinceO, ; T O;, 3 N;(0) € N such that fom > N; we have that

20(Aj(i) N O;) +

11(0;) — (O )| <

foreachi,1 <i < kandeach,1 <j <k.

2. Consider that4’ (i) U O, ;) C (A%(i) U O;). Since
(A§() U O ;) = n(A(i)) + p(On3) — p(AG(i) N Oy )

and
(A5(i) U O)) = p(Ay(i)) + pu(0;) — u(Aj(i) N Oy),

then by the monotonicity gf we have that
(AG(0)) + (O 5) = (A(i) N Ony) < u(A(D)) + p(O;) — p(AG(i) N Oy),

so that
(A1) N Oy) — p(Af(i) N Ony) < 1(0;) = p(Ony).
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Thus, since the left side of the equation is non-negative, we have that

|1(A5(0) N O5) = u(A5(6) N O )| < 11(O;) = 1(Ony)l.

Now 3 N, € N such that fom < N, we have that

e

1(0;5) = 1(On)| < 2/u(0)[’

forall j. Thus,

for all 5.
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Now let N = max{Ny, N»}. Then for eacl¥, andn < N, we have that

pi;(0) 1) (0)] = M(AZ%S ) MAZ(( ) m;))

1(Ong)1(AG(0) N O;) — p(O;)n(A5(i) N Ouy)

#(0)1(00)
_ [0t 0 0p) — w0 Ay N 0y
- 1(0))| |0,
+]u<0> H(A5(0) 1 05) = p(0;)u(AG(i) N Ony)
1(0))| |00,
n(A3(0) (Ons) = 1(O;)
S (0]
4501 0) = (A1) 0 00 (0
‘u (AL(i) N O;)le ‘,u(O») xe!
< +
’,u (AL N O) | + Da 2‘/1
< g+§:5. (2.14)

This convergence occurs almost everywhere,, since it cannot be shown to occur over
sets ofu-measure zero. This is equivalent to almost sure,, convergence and conver-
gence with probability 1 (also known as convergence in law), since we are using probabil-
ity measureu. Recall that clasg,_, ;. is the dependent class conditional probability with

regard to the classification system. Let

Q™ (0) = (55 (0), B[ (8)..... B (B). ... B(0), ... By, (0)) (2.15)
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Then the set of? — k — 1-vectors over alP,

{Q<">(0) .0 c @}, (2.16)

defines thenth ROC estimate of the ROC manifold. We assume it is a proper ROC
manifold. Thus for each € N there exists a continuous real-valued functiohin &k — 1

variables. Let
9 (Q™(0)) = Dr_14(6)

be such a function. Let

Q(0) = (p211(0,p31(0), ..., pry2(0), - ... p1(0), - .., Di—21x(0)) (2.17)

for eachd € ©, and set

9(@(9)) = pk71|k(9)

Itis clear from Theorem 1, that:

1. g, is continuous ore;

2.

gn(Q(")(e))‘ < 1forall @ € ®; and
3. 9.(Q™(8)) — g(Q(0)) a.e. for fixed 0.
Then fore > 0 given, letB(®;¢) be an opert-ball in ®. Thus, by the Dominated

Convergence Theorem, we have that

lim
n—oo B(®;)

Gn — g)dC =0. (2.18)

so thatlim g, = g a.e. on B(®;¢). This convergence is uniform.e. over compact

subsets 00. o
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lll. A Category Theory Description of Fusion
3.1 Probabilistic Construction of the Event-Label Model

Let ¥ be a complex of conditions [28] for a repeatable experiment, arfd ket a set
of outcomes of this experiment with C R being a bounded interval of time. Interval
sorts(? such that we calk C 2 x T anevent-state An event-state is then comprised of
event-state elemenis= (w,t) € E, wherew € Q andt € T. Thuse denotes a state at
an instant of time. Let() x T, be the set of all event-states for an event over time interval
T. Let& be ao-field on€2 x T, andy be a probability measure defined on the measurable
spaceg2 x T, &, ). Then the triplg2 x T, &, 1) forms a probability space [5].

The design of a classification system involves the ability to detect (or sense) the oc-
currence of an event i, and process the event into a label oflsetFor example, design
a system that detects airborne objects and classifies them friendly or unfriendly. To do
this a classification system relies on several mappings, which are composed, to provide
the user an answer (from the event, to the label). Siceao-field on€2 x T, then let
E € & be any member of’. Then a sensos, is defined as a mapping frominto a (raw)

data seD. We denote this with the diagram

E——D
sos(e) =d € Dforalle € E. The sensor is defined to produce a specific data type, so the
codomain ofs, cods) = D, whereD is the set describing the data output of mapping
A processorp, of this system must have domain, dgm= D, and maps to a codomain

of featuresF (a refined data set), cgd) = F. This is denoted by the diagram

D-—2-F.

Further, a classifier;, of this system is a mapping such that dein= F and codc) = L,

whereL is a set of labels the user of the system finds useful. This is denoted by the
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diagram

E—>D—"2>F—>1,,

as A, the classification system over an event-siatehereA is the composition of map-
pings
A=copos.

Thus, A is anL-valued random variable which maps membiérs & into the label sel.

and is diagrammed by

E—2-1,.

Consider the simple model of a multi-sensor system using two sensors in Figure 3.1.

The setd;, for i € {1,2}, are sets of event-states. The labellsetan be as simple as

S1 Cc1

E, D, 2= T,

Ly

c2

Ey 2> D, 2>,

Lo

Figure 3.1:  Simple Model of a Dual-Sensor System.

the two-class seftarget, non-targétor could have a more complex structure to it, such as

the typesof targets and non-targets, paired with a ranking of measure, for example [56],

in order to define the battlefield more clearly for the warfighter. Now the diagram in Fig-
ure 3.1 represents a pair of classification systems having two sensors, two processors, and
two classifiers, but can easily be extended to any finite number. Now consider two sensors
not necessarily co-located. Hence they may sense different event-state sets. Figure 3.1
models two sensors with differing fields of view. Performing fusion along any node or

edge in this graph could possibly result in an elevated level of fusion [15]-that of situa-
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tion refinement or threat refinement, since we are not fusing common information about a

particular event or events, but we may be fusing situations.

There are at least two other possible scenarios that Figure 3.1 could depict. The sen-
sors can overlap in their field of view, either partially or fully, in which case fusing the
information regarding event-states within the intersection may be useful. Thus, a fusion
process may be used to increase the reliability and accuracy of the classification system,
above that which is possessed by either of the sensors on its ownE regiresent that
event-state set that is common to both sensors, théat is,E; N E,. Hence, there are
two fundamental challenges regarding fusion. The first is how to fuse information from
multiple sources regarding common event-states (or target-states, if preferred) for the pur-
pose of knowing the event-state (presumably for the purposes of tracking, identifying, and
estimating future event-states). This is commonly referred to as LLeusion (or Level
0 fusion) Object Assessment. The second and much more challenging problem is to fuse
information from multiple sources regarding event-states not common to all sensors, for
the purpose of knowing the state of a situation (the situation-state), such as an enemy situ-
ation or threat assessment. These are the higher L2agld3, Situation Assessment and
Impact Assessment. We distinguish between the two types of fusion scenarios discussed
by calling themevent-state fusionand situation-state fusionrespectively. Therefore,

Figure 3.2 represents an Event-State-to-Label model of a dual sensor process. The only
])1 p1 Fl Cc1 Ll
E
$2
Dy _p2 F, 2 Lo

Figure 3.2:  Two Classification Systems with Overlapping Fields of View.

restriction necessary for the usefulness of this model is that a common field ofRjiew,
be used. Consequently; andD- could actually be the same data set under the model,

while s; ands, could be different sensors. We will refer to a finite number of families of

44



classification systems, such as the two in Figure 3.2, which we wish to explore the fusion
of, as a fixed classification category. Ffirconsidered as a category of sets, and a fixed
label setl., we note thal.?, is the functor category of all such classification systems, so
that our fixed classification category is a subcategoty’of Each classification system or

set of sample functions comprises a fixed branch‘ofi.e., a functor or a family of func-

tors). Equally true is the fact that if we want to compete classification systems, we must
test them over the same sample space as well. Therefore, we choose the functor category
LE, with a fixed L and a fixed E, to compete the classification systems over. Our conver-
gence theorems allow us to treat E as if it weredhmple population, with the caveat that

our test then is only as good as it is representative of the operational circumstances of the

real-world population.

It is also important to note that when we want to fuse classification systems (or fami-
lies of classification systems heretofore denoted as sample functions), we must be fusing
systems which are originally yielding values from the same label.sahd not just the
same set up to isomorphism. We will later show that there are two kinds of fusion with
regard to these label sets, but for right now, we consider fusing only those branches which
produce values in the same exact set. Additional considerations and techniques must be

used to fuse across different label sets.

3.2 Construction of a family of classification systems

3.2.1 Single Parameter. Now suppose we have a parametee ©, which is
possibly multidimensional. Then it is common that there is a farjity,: 6 € ©}, of

classifiers so that for ea¢he ©, each composition,

cgopos

describes an event-state model on fixed &, and fixed set®, F, andL.. The corre-
sponding family
A= {AG | S G}a
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whereA, = ¢y o p o s, is a family of classification systems. Th@acts as an indexing
set for definingA which also could be thought of as a collection of sample functions or

sample sequences depending on whether or not the parameter set is countable.

3.2.2 Multiple Parameter . One can extend the ideas in Section 3.2.1 to include

other index set§ andA, so that the composition

Cp O Ps O Sy,

whered € ©,5 € A,y € I, is a classifierds,). In this case, we must look at the
triple (6, 9, ) as the parameters for the ROC manifold. If we have a two-class label set,
then this presents us with the case of degeneracies. For example, suppose we calculate
the optimal point on the ROC-manifold. Then we have three parameters representing
each point on the curve, so that there may be multiple triples which optimize, none better
than the others. This fact alone may make it difficult to calculate an optimal triple, since
no inverse function mapping ROC points on the curve to the product $pacé\ x I'

exists. To eliminate degeneracies, givemlasses, we require> — k — 1 = m — 1
parameters. Any more than this yields such degeneracies, while any fewer results in
either a smaller dimensional ROC manifold, or a set of ROCs which is not a manifold and
possibly a suboptimal choice of operating parameters (suboptimal with respect to a ROC

(m — 1)-manifold).

3.3 Defining Fusion Rules from the Event-Label Model

At this point we begin to consider categories generated by the model’'s sets of data.
LetD = (D, Idp, Idp, o) be the discrete category generated by dat®dseiVe use these

categories to define fusion rules of classification systems.

Definition 26 (Fusion Rule ofn Fixed Branches of Families of Classification Systems).
Let &, be a fixed classification category withbranches. For each= 1,...,n, let

O, € CAT be a small category of data corresponding toithdranch’s source of data to
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be fused (this could be raw data, features, or labels). Then the product

is a product category. For any particular category of datathe exponentiak); ™ isa
category of fusion rules, each rule of which maps the products of data ob)égts(n))
to a data object irOb(QO,), and maps data arrows iAr(7(n)) to arrows inAr(O,).
These fusion rules are functof8, which make up the objects of the category. The arrows
of the functor category are all the natural transformations between them. We designate
F R, (0y) to be this functor category of fusion rules.

If the O, are categories generated from sensor sourioes gutputs), then we call
(93(”)1 a category of data-fusion rules and use the syr‘rTDéfg)l. The fusion rule branch

would then be diagrammed like this:

E <81,52,. 5n>ﬂ_(n)1 r DO p F Co L7 (31)
whereDy is the receiving category, is the fusion rule, andk s, ss,...,s, > is the

unique arrow generated by the product),. If the categories are generated by processor
sources, then caﬂ?g(”)2 a category of feature-fusion rules and use the symlﬁé@?.

fusion rule branch would then be diagrammed like this:

E <51,82,.., 3n>ﬂ_(n>1 <p1,P2,---,Pn> ﬂ_(n)Q r FO Co L, (3.2)

wheren(n); is the first product of data categoriesy ), is the second product of feature
categories, r is again the fusion rule, ang, p», . . ., p, > is the unique arrow generated
by the productr(n),. Finally, if they have classifiers as sources, then call them label-

fusion rules (or, alternatively, decision-fusion rules) and use the synﬂﬁé?%g. This
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fusion rule branch would be diagrammed like this:

O |

<C€1,€25--+5Cn >
e n)2 _—

E m(n); ——1, (3.3)

wherer, is a fusion rule for each parameter (in order to generate an appropriate family
of classification systems), and ¢y, cs, ..., ¢, > is the unique arrow generated by the
productr(n)s. ( We removed the parameters from the classifiers and replaced them with

a single, possibly vector valued, parameter on the fusion rule).

A fusion rule could be a Boolean rule, a filter, an estimator, or an algorithm. Notice
that our definition of fusion rule does not include a qualitative component; there is no
necessary condition of “betterness” for a fusion rule. The result of applying a fusion rule
to an existing set of fundamental branches could result in output considerably worse than
existed previously. This does not affect the definition. First we define fusion rules as the
key component of the fusion process. Next, we pare down the category to a subcategory
which does include a qualitative component, with one suggested way of accomplishing
this. We now desire to show how defining a fusor (see Definition 30) as a fusion rule with
a constraint changes the Event-State model into an Event-State Fusion model. Continuing
to consider the two families of classification systems in Figure 3.2, it is evident that a
fusion rule can be designed which would apply to either the data sets, the feature sets,
or the label sets (though special care needs to be taken with this case, when the actual
labels are not the same). Given a fusion fBiéor the two data sets as in Figure 3.2, our
model becomes that of Figure 3.3. A new data set, processor, feature set, and classifier
may become necessary as a result of the fusion rule having a different codomain than the
previous systems. The label set may change also, but for now, consider a two class label
set, that of

L = L; = Ly = {Target, Nontarget},

where the targets and non-targets are well-defined across classification systeeesch

classification is identifying targets that satisfy the same definition of what a target is). In
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Figure 3.3:  Fusion Rule Applied on Data Categories from Two Fixed Branches.

awithin - fusion scenario (see Definition 34 as opposed to Definition 35), the data sets (or
feature sets) are the sanie, = D, = D3. This is true in the case that the sensors used
are the same type (that is, they collect the same types of measurements, but from possibly
different locations relative to the overlapping field of view). In the case where the data
sets (or feature sets) are truly different, a composite data set (and/or feature set) which is
different from the first two (possibly even the product of the first two) is created as the

codomain of the fusion rule functor.

Now at this point we may consider, in what way is the process modeled in Figure 3.3
superiorto the original processes shown in Figure 3.2 whes L; = L, (we will deal
with the casd.; # L, later)? One way of comparing performance in such systems is to
compare the processes’ receiver operating characteristics (ROC) curves, which we will do

in the Chapter IV.

3.4 Fusion Rules

3.4.1 Object-Fusion. There are, of course, multiple descriptions in the literature
to “types” of fusion. There islatafusion,featurefusion, anddecisionfusion. There is
data in-feature out fusion [8] and many more. We would like to codify what should be
meant by these expressions by introducing, in its most basic form, a vernacular for fusion
which is intuitive, yet has its definition rooted in mathematics. We start by assuming we
have a finite number of objectee wish to fuse together. What does the finite set of fusion

rules look like? How can we describe in an observational way what is going on? Once

49



the definition of fusion is established, we can move on to labeling types of fusion under

certain model asumptions.

Definition 27 (Object-Fusion Category).Let{O; | i € {1,...,m}} be afinite sequence

of non-empty categories (possibly discrete). Then

for fixedm € N. Then for a fixed categor§, we have that
FR, () (0) = O™

is a functor category. The functor categ®RR ..., (O) is called anr(m)-Fusion category
relative to O to denote the functors are fusing O;-objects, and as necessary, their
accompanying arrows into a single object and arro@inWhen the relationship of all the
O, objects can be made clear, by simply calling them “objects”, then weF@ll,,,,(O)

the Object-Fusion category relative@(regardless of the value of).

It's important to note in our definition of fusion rules we did not put forward the notion
of defining fusion rules in terms of performance. We will need a second mathematical
definition later to narrow the category of fusion rules down to a subcategory of fusion
rules, which can be ordered according to their performance in some manner. First we'll

consider further delineating the types of fusion rules within the Event-State model.

3.4.2 Types of Fusion Rules. We consider digrapks, as depicted in Figure 3.4,
consisting of sample functions which are compositions of random variablesan event

in the o —field, &. The setd); andD, are objects of a finite collection of categories
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of data sets, while the set§ andF, are objects of a finite collection of categories of
feature sets. The label sdts andL, are the objects of a finite collection of categories

of label sets (and we still require tht = L,). Figure 3.5 shows the nodes in digraph

Co

D, b F,

/

E

Ly
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D, 7 Fy,— L,

Figure 3.4: Digraph G.

G along which fusion rules can be applied. With the use of category theory, we can also

D, 2 F, = L
/
E
\
D, & F, ’ Ly
fusion fusion fusion

Figure 3.5:  Known Fusion Rule Nodes of Digraph G.

describe that there should theoretically be nodes along the arrows of digrgptiusion

rules as well, though we have no example at this time of a rule or algorithm that does this
without using the pointwise outputs of the arrows. Figure 3.6 shows all available fusion
rule nodes applicable (at least theoretically) to the event-state decision model. This leads

to a theorem regarding the types of fusion available under the model.

Theorem 3 (Six Categories of Object-Fusion under digraphz). Let G be a digraph

with an initial vertex andn branches withk vertices to each branch, so that there are
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D, P F, ‘ L,
fusion fusion fusion
fusion fusion fusion

Figure 3.6: Theoretical Fusion Rule Nodes of Digraph G.

nk—(n—1) =n(k—1)+ 1 total vertices anch(k — 1) edges. Then there exi2& — 1)
categories of Object-Fusion that can be performed on any event-state decision model that

G represents.

Proof: Excluding the evenE, there are an equal number of edges and vertices to each
branch. The initial vertex represents the event set while the composition of arrows (edges)
along each branch represent the classification system. Fusion rules are objects within
functor categories, so that if we label the non-initial vertices matrix style with rows repre-

senting branches arkdcolumns representing the vertices:

v11 V12 e Uik (3.4)
U21 V22
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The components of columican be considered as beinhgategories from a finite subcat-
egory of the categorZ AT. Suppose that in columhwe have categories

O;,i=1,2,...,n. Then

is a product category for thgth column. LetO be any category. Then the functor
categornyF R, (O) = O™"i is ther (i) ;-Fusion category relative 16. Furthermore, in
addition to labeling the non-initial vertices as matrix components, we can create a matrix
from the edges in the same manner, and without loss of generality, the resutiose
fusion categories, so that the total number of fusion categoriégis 1). o

When the number of vertices per brankhs 4, as in digraplz, (see Figure 3.4), then
we have six% - (4 — 1) = 6) categories of Object-Fusion. Adopting the labeling scheme
used by our model, we can label each category’s “objects” as Sensor-, Data-, Processor-,

Feature-, Classifier-, or Label- (or Decision-)Fusion.

3.4.3 Comparison of Desarathys paradigm with Fusion Categorie§he chart in
Table 3.1 shows the relationship between these categories and Desarathy’s breakdown of

the types of fusion.

| Desarathy’s I/O taxonomy Category Theory Approach |
No taxonomy Sensor-Fusion
Data In-Data Out Data-Fusion
Data In-Feature Out Processor-Fusion or Data-Fusion
Feature In-Feature Out Feature-Fusion
Feature In-Decision Out Classifier-Fusion or Feature-Fusion
Decision In-Decision Out Label-Fusion (also called Decision-Fusign)

Table 3.1:  Desarathy’s I/0O Fusion categorization from [15] .
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3.5 Operating Characteristic Functionals

Definition 28 (Similar Families of Classification Systems).Two families of classifica-
tion systems\ andB are called similar if and only if they operate on the sardeld and
their output is the same well-defined label set.

Suppose we have a fixed classification cateddryand letA be an object in this cat-
egory. Then foll. consisting oft labels, there exists a vector{n = k? — k)-ROC space

described by an-vectorv 4, where

vag = (P2pn(A), .. pepn(A), o pe—1je(A)).

The proof is self-evident sincE is a sample space. We call this vector theerat-

ing characteristic vector, and we let
V ={vs | A€ Ob(L")} (3.5)

and
YV =0Cs = (2(V),Ar(V),1d(V),0), (3.6)

where (V) is the power set of/. The categoryOC; = is the category of operating
characteristic families with undetermined non-identity arrows (we will determine them

presently). Now, consider the category
€ = (2(Ob(L")), 1d(LF), I1d(L¥), o)

whose objects are sets of classification systems. Phen Ob(C) for each family of
classification system&. Let
F:C—V (3.7)
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be an operating characteristic functor, which maps power sets of classification systems to

the set of operating characteristics associated with them. Let
&V —P (3.8)

be a functor wher® is a poset, thought of as a category induced by a partial ordef,its
elements. Theg is a functor taking objects consisting of sets of operating characteristics
into a value ofP. We do not need to define the rule at this point. AgfA; € C, such

that
F(Ao) = fa,

and
S(A1) = fa,

where the outputs are families of operating characteristics. Then the diagram

fé}o Lé(ﬂ%) =Po

g lw
-

fA1 *)g(fAl) =D1

wherepg, p1 € P, commutes for some unique (up to isomorphigm)rhisg is an induced
partial order orV. Thus, for every pair of families of classification systewg, A, € C,

we have that the rectangle
Ao —2=F(Ao) = fay ——=E(fuy) = o (3.9)
1Y g \Y,

s ! ¢
Ay HS(Al) = fa, Hf(fm) =DM

commutes when we impose the criteridp = A, iff (0 F)(Ao) > (£0F)(A;), so that

the functor¢ o § is a natural transformation. It is precisely the arrows likevhich make
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such rectangles commute, that belong in the categoryit is also the arrows induced
from the partial order=, which provide unique maps from one classification family to

another, which will allow us to define the fusion process in Section IV.
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I\V. An Optimization for Competing Fusion Rules
4.1 Bayes Optimal Threshold (BOT) in a family of classification systems

4.1.1 Two-class BOT. Let(E, &, u) be a probability space anid be a family of

sample functions (classification systems) with parameter gpadect
{E1,E2 . El,EQ < (g)}

be a partition oft, andL. = {/;, ¢»}. Itis well-known and accepted that the threshold for
which the probability of a misclassification (or Bayes error) is minimized is considered
best and denoted the Bayes optimal threshold (BOT). That i-ife A with 6* € ©

minimizes the quantity

p((Aj(6) NE) U (Af(62) NEy)) = p(Af(6r) N Ey) + (A3 (L) NEy)
= pi2(Ae)p(Ez) 4+ paji (Ao)pw(Er),  (4.1)

where .(E;) and p(E;) are the prior probabilities of classand clas<, respectively.

Thend* is the BOT for the family of classification systems

4.1.2 N-class BOT. Now let us keep the assumptions of the previous section with

the exception that we now haweclasses to consider, and
{El,EQ,...,Ek E,e&Vi= 1,2,...,k’}

is a new partition of into k classes, with. = {¢;, (s, ..., ¢} alabel set corresponding
to the partition of classes. Then the corresponding Bayes Optimal Threshold O,

where® is nowk — 1 dimensional would be the parameter which minimizes

Berr = Z

=1 3

(1 = d4,5)pi; (Ag) u(E;), (4.2)

k
=1
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where
0 if i#£j
1 if i=

4.2 An Optimization over ROf-manifolds for competing fusion rules

4.2.1 ROGCn-manifold optimization. The method used in this section applies and

extends that of [31]. Let € N, k£ > 1 be given, withm = k* — k. Let

Tma1 = f(x1, 29, ..., 2)

be the equation of the RO&-manifold. Then define

U(zy, 2o,y Tin1) = f(T1, %2, oy Tn) — Tyt

Let M = {(z1, 2, ..., Tms1) : ¥(z1,29,...,2my1) = 0} be the ROGn-manifold. As-
sumeR(0) = (0,0,...,0,0). Then there ig; € [0,1] such thatR(t;) € 9, with ¢,
dependent upon the particul®. We assume all first-order partial derivatives exist and
are continuous fo. For eacht € [0,1] let R(t) = (Xy(¢), Xa(t),..., Xm+1(t)) be a

smooth trajectory that starts at the initial poffit0, ..., 0, 1) and terminates on the man-
m+1

ifold M. Choose weights; > 0 fori = 1,2,...,m + 1 such that} ~a; = 1, and let
=1

| - |lw represent the weighted(R™+') norm defined oV = (v1, vy, . .., Upy1) Dy
m+1
IVilw = ai | vi . (4.3)
=1

Define the functionall
ty |
IR) = [ IR0 s e (4.4)
0
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Theorem 4 (Thorsen-Oxley).Givenk classes, and a RO@-manifold, wheren + 1 =

k* — k is the number of possible types of errors in classification, and given weights
m+1

a; = c;oy, @ cost times a prior probability (Wherg a; = 1), then the Bayes Optimal

=1
Threshold corresponds to the poipt,on the ROGn-manifold, f, where

Vip)= - <a17a27--~aam+1)- (4.5)

Am+1

Proof: For ease of notation, define
G(t,R(t), R(1)) = [R(1)]lw
and letY;(t) = X;(t) for eachi. Hence we write Equation 4.4 as
ty
JR] = / G dt (4.6)
0

and we will suppress the integrand variables. We would like to mininijz let’s find

R(t) with initial and terminal points as discussed which minimizes the functional.

Leta € [/, 5] wheres € R, 5 > 0 be a family of real parameters. Let
{R<t7 Oé) - (Xl(ta Oé), X2(t7 Oé), v 7Xm+1(t7 Oé)) ac [_57 ﬁ]} (47)

be a family of one-parameter trajectories which contains the optimal &ive. Fur-
thermore we assume thatat= 0 R(¢,0) = R*(¢). LetR(¢s,«) € M. By the Implicit
Function Theorem, there is a functi@i(«) such thaR(7(«), a) € M for all . Thus
R(t7,0) = R*(t}) so thatT;(0) = t;. AssumeR*(t) minimizesJ, then a necessary

optimality condition is that the first variation of

JR( )] = /0 Ry 4.8)
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be equal to zero at = 0. That s,

d
2o IR a)la=o = 0. (4.9)

We use the notation

= @‘az()
for brevity. Applying Leibniz’s rule to the derivative of Equation 4.8 we get

t*

SJ[RY) = G|y 6Ty + / (Vi G* OR + V,G* - 0R)dL. (4.10)

0

whereG* is a suppressed notation f6¥t, R*(¢), R*(t)). Now integrating by parts yields

. 3 d
dJ[RY] = G*|t:t; 0Ty + [VyG* . 5R]éf +/0 (VxG* - R — %VYG* -0R)dt. (4.11)

At o = 0 we have the necessary optimality condition

t; d
SR = G|ims: 0T+ |VyG*-0R] iy + /0 (VaG*0R— 2 VyG™-0R)dt = 0. (4.12)

Since this must be true over all admissible variations, we have the Euler Equations

d

XG* - I,
v dt

V,G* =0. (4.13)
for all ¢ € [0,¢%] and a transversality condition

G*|t:t; (STf + [VyG* . 6R]t:t’} == 0 (414)

Solving the Euler Equation 4.13, we haVgG* = 0, which implies

d

VG =0, (4.15)
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hence,
< sgn(y;:(1)) = 0 (4.16)

fori =1,2,...,m+ 1, wheresgn(Z) returns the value of-1, 0, or 1, depending on the

sign of the function Z. Thus, for eadh=1,2,...,m + 1, we have
sgn(Y;'(t)) = k; (4.17)

Hencesgn(Y;*(t)) = k; for somek; € { —1,0,1}. Thus, for alli, we haveA X7 (¢) > 0
for all t and At > 0 for all ¢, so thatk; = 1. lItis clear thatA X (¢) = 0 is not optimal

given the initial and terminal conditions. Thus, we have that
sgn(Y; (1) = sgn(¥Y; (1) = ... = sgn(Y;5(1)) = —sgn(Y,s,, (1)) = 1.

Now R(T(«), ) terminates oM, so¥(R(7y(a),«)) = 0 forall . LetR*(ty) =

(x7,25,...,25,1) € M. Hence,
Xint1(Tr(@), ) = f(X1(Tf(a),a),..., Xpn(Tia),a)) (4.18)

for all . Taking the variation of each side, we have

*
Tiy---

&’ti

Y (68T + 6 X (t5) = Y 2 i) (6T + 6.X(t7)] (4.19)
=1

Expanding Equation 4.19 and definifg(t) =  X;(¢), we have

. . m@fﬂ:*,...,xfn .
Ym+1(tf)6Tf+Hm+1(tf) = Z (lﬁx‘ )Yi(tf)éTf

sy et @20
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Rearranging terms, rewriting in vector notation, and letiffng= f(z7,...,z},) we have

af* af*

1) - (Hy(t}),. .., Hyu1(t3), Hy(t5
(81}17 ’axmfl? ) ( 1(tf)> y tdm 1<tf)a m(tf))
of* of* .
—1) - R (t})0Ty = 4.21
+ (axla 7axm717 ) R (tf)(s f Oa ( )
which can be rewritten

VU H(t) + VI - R (t5)8T) = 0. (4.22)

From Equation 4.14 we write

Since both Equations 4.22 and 4.23 must be true over all variations and all possible one-

parameter families, we have

kVyG* = \VA'% v (4.24)
for somex € R. Hence, fori = 1,2,...,m + 1 we have
ov o
axi |t:t} = RQ; Sgr.(}/Z )(tf) (425)
In the case of = m + 1 we have that
ov*
—-1= ame |t:t; = RGm+1- (4-26)
Thus, we have that = ﬁ Hence fori = 1,2, ..., m we have that
ov* —a;
T e = 2 (4.27)

t=t .
a$i| ! Am+t1
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This leads to the result that

-1
= (ala ag, ... 7Clm+1) (4.28)

Q41

is a normal to the ROGr-manifold 2t at the terminal point oR*(¢}), the smooth tra-
jectory minimizing J!  This is a global minimum, since we are optimizing a convex
functional [31]. This agrees with the limited approach based on observation taken by
Haspert [18].

The equation of the plane perpendicular to this normal and tangent to the ROC mani-

fold at the optimal point is

ar(xy — 27) + ag(xe — 23) + ... + a1 (T — 25,44) = 0. (4.29)
%
To find (z7,23,. .., 2}, 1), generate the plan@z, + axzs + ... + Gpi1Zme1 = 0,

which passes through the origin, and translate it to the R@@anifold towards the
point (1,1,...,1) until the plane rests tangent to the ROC manifold at a single point.
This point, (z7,z3,...,2;,,,), is the terminal point oR*(t}). Now, recall thatm =

k* — k. We associate thg with the number of classes in a classification problem, so
that there is a label set of interest with cardinaktyand a sample space with a partition

of cardinality k£ associated with these labels. LUet= 1,2,...,k, and for each let
r=1,2,...,k, v # [. Then associate with each= 1,2,...,m an unique(l, r) pair.
Designate for each; thatz; = p,(Ay) for someA, € A, a family of sample functions
(classification systems). Thus, thevariables represent the error axes of thelass
classification problem. Similarly, we can designate costs (or losses) for each error by

allowinga; = ¢, for eachi. Then the sum,

k k
> > (1= )erpy(Ag), (4.30)

=1 r=1
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is the equation for Bayes Risk, or Bayes Error in the case where- 1 for each(l,r)

pair. We then have for the specifi¢, that there exist8* € ©, such that
z} = prr(Age), (4.31)

so thatf* is the Baye’s Optimal Threshold (or Baye's Optimal Risk Threshold) for the
k-class classification problem. When these correspondences can be made (along with
the appropriate dimensionality of the parameter sgae@ad the ROC manifolédl), it is

clear that our optimal trajectorg*(¢}), terminates on the ROC manifold corresponding

to the Baye’s Optimal Threshold (or Baye’s Optimal Risk Threshold). Therefore, we have
shown how a ROC manifold can be analyzed to find the point corresponding to the Baye’s

Optimal Threshold.

4.2.2 ROCI-manifold optimization (Optimizing the ROC curve)Here we demon-
strate the optimization of ROGmanifolds, referred to in this section as ROC curves. We
demonstrate that the technique shown in the previous section applies to the case of the
two-class problem, with the ROC curves having the ayesgcal in the literature-a true
positive axis in the vertical direction and a false positive axis in the horizontal axis. We
will only consider ROC curves that are smooth (differentiable) over the entire range, i.e.,

we consider the set

C'([0,1],R) = {f:[0,1] — R : fis differentiable at each x € (0, 1)

and its derivative f’ is continuous at each x € [0,1]}.

Given a diagram describing the family of classification systéms{ A4, : § € ©}, with ©
a continuous parameter set (assumed to be one dimensional)afidu) a probability
space of features, there is a sgt= {(0, poji(Ag), p111(Ag)) : 0 € ©} which is called
the ROC trajectoryfor the classification system familft. The projection of the ROC

trajectory onto thepsj1, pij1)- plane is the sefy = {(p21(Ag), p111(Ag)) : 6 € ©} which
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is the ROC curve of the classification system fandily Hence, forh € [0, 1] such that

h = paj1(Ag) for somed € ©, we have that

[Pl ({}) = { Ao},

that is, the pre-image df underp,;(-) is the classification system,, which we assume
has a one-to-one and onto correspondencgé toTherefore, the BOT of the family of
classification systema, denoted byd*, corresponds to some = po;(Ag-) € [0,1],
which may not be unique, unless the functjen (-) is one-to-one. So, there is at least

one suchh*, now what can we learn about it? Consider the problem stated as follows:

Let o, 5 > 0. Among all smooth curves whose endpoints lie on the point
(0,1) and the ROC curve given by = f(X(t)), find the curve, defined by
the trajectoryR(t) = (X (), Y (¢)), for which the functional

h h
JR) = / IR,y d = / X+ BV (4.32)

has a minimum subject to the constraints:

R(0) = (0,1)
R(h) = (h, f(h)),

for someh € [0, 1] that depends oR. We letX (¢) = t due to the constraints
and denotéV = X(t) andZ = Y(t), so thatX (¢) = 1, and Equation 4.32
becomes

(4.33)

JIR] = /0 o+ B1Z(8)[]dt. (4.34)

Observe thaty = pi2(Ag) , f(h) = p11(Ag) for somed € O, andf =
w(E) =1 — awith o = u(E,), the prior probability of a clas3 occurrence.

The functionalJ, when minimized, identifies the trajectory with smallest arclength
(measured with respect to the weightedorm). The constraints of Equation 4.33 require
that the curve must begin &b, 1) and terminate on the ROC curve. The integrand of

Equation 4.34 can be written in a suppressed form
G(t, X (1), Y (1), X (1), Y (t)) = G(t, X, Y, W, Z), (4.35)
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so that the partial derivatives are more easily understood. In the case Whkere- ¢,

thenX (t) = 1 and we have that Equation 4.35 can be further suppressed:
G(t, Y, Z) (4.36)

Any R that minimizesJ, subject to the constraints 4.33, necessarily must be a solution to

Euler’s Equation [13]

0 d 0

From Equation 4.32 we havé(t,Y,Z) = « + (8]Z|, so that;2G = 0 and .2G =

B sgn(Z). Hence, we have th& solves the Euler equation

~Lsgn(Z(1) =0 forallt € (0.1). (4.38)

Integrating this equation reveals thigin(Z(¢)) is constant for alt € [0, h]. SinceY (¢) <
1forallt € (0,h),andY (0) = 1, from Constraints 4.33, thesgn(Z(¢)) must be) or —1,
since the trajectory is moving either constantly across to the curve or constantly downward
from the point(0,1) . Now, if sgn(Z(t)) = 0 for all ¢, thenl = Y (0) = Y'(h) = Y (1)
due to the smoothness of the ROC curve. Substituting this solution into the functional
in Equation 4.32 yields

JR] = ah = p(E)pyja(Ap), (4.39)

with pyp(Ay) = 1. Thus,J[R] = u(E,) and the weightedl¢norm) arclength of curve
R is thereforeu(Ey). On the other hand, gn(Z(t)) = —1 for all ¢t € (0,h), then
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|Z(t)] = —Z(t) and substituting this intd directly in Equation 4.32 yields

JR] = /Oh [ — BZ(t)]dt (4.40)
= ah+pY(0) = Y(h)]
= ah+[1-Y(h)]3
= pua(Ag)p(Es) + (1 = pip(Ag)) p(Er)
= p1p(Ao)u(E2) + pap (Ag) u(Er). (4.41)

Notice that Equation 4.41 is identical to the unminimized Bayes Optimal Threshold equa-
tion. Thereforeh = h* which minimizes Equation 4.41 corresponds to the BOT of

the family of classification systema4,. The transversality condition [13] of this problem

is
a+ BIZ(E)| l=n- +B(f'(t) = Z(t))sgn(Z(t)) |e=p+= 0 (4.42)
so that
fw) =3 (4.43)
which is
Fi(h) = ZEE?; (4.44)

So the transversality condition tells us that the BOT of a family of classification systems
corresponds to a point on the ROC curve which has a derivative equal to the ratio of prior

probabilities,
E:)
(Er)

Therefore, if one presumes a ratio of prior probabilities equal then the point on the

curve corresponding to the BOT will have a tangent to the ROC curve with slope 1. We

could substituter = Cu(E;) and8 = Coppi(Eq) whereClj, andCy; are the costs of
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making each error, or we could specify a cost-prior ratio

01|2M(E2)
C2|1M(E1)’

if we wish to consider costs in addition to the prior probabilities. This gives us an idea
of what would make a good functional for determining which families of classification
systems are more desirable than others. An immediate approach would be to choose a
preferred prior ratio and construct a linear variety through the optimal ROC point (the
point (0, 1) for the typical two-class ROC manifold classification problem, the origin in
thek > 2 class case.). Then for each point on the ROC curve, take-tteem of the

vector which minimizes the distance from this point to the linear variety. If we knew the
function generating the ROC curve (or a ROC manifold), we could calculate the optimal

ROC directly, but this is not the case in practice.

It is still possible that many ROC curves could be constructed so that the point on
the ROC curve corresponding to the BOT for each one has the same distance to the linear
variety. This could be a rather large equivalence class of families of classification systems.
This is similar to the problem faced when using area under the curve (AUC) of a ROC
curve as a functional. In both cases the underlying posterior conditional probabilities
are unknown and there are just too many possible combinations of posterior distributions
that can produce ROC curves with the same AUC (or equal BOT functional values). The
point, however, is that using a functional based on the BOT, we would have a leveled
playing field since we are debating which ROC (and therefore the classification system it
represents) is better based on faeneprior probabilities. AUC equivalence classes are
over the entire range of possible priors and therefore of less value. Furthermore, the AUC
functional does not relate its values to the unknown priors at all. Rather, itis related to the
value of the class conditional probabilities associated with a classification systeilover
possible false positive values. It is therefore essentially useless as a functional in trying

to discover an appropriate operating threshold for a classification system.
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4.3 A Category of Fusors

4.3.1 A Functional for Comparing Families of Classification SystemgVe desire
a method to compete families of classification systems with the specific intent to compete
fusion rules. We show explicitly how to do this with = 2 classes. Although we are
proposing one specific functional on the ROC curve to do this, other functionals can be
developed as well. Ultimately, once the functional, along with its associated data is
chosen, one has a way of defining fusion (and what we call fusors) for the given problem.

Letn € N be the number of classes of interest, amd= n?> — n. We construct the
functional over the spack = C([0,1]™" !, R) N C'((0,1)™"! R), recognizing that we

are competing ROC curves, which are by definition a subsgt of he functional
X — R,

wheren = 2 is the number of classes, is denotéd-; v, 12, «, 3) for the ROC curves
corresponding to a two-class family of classification systems, where Cy; Pr(¢;) is

the cost of the error of declaring claBs when the class is truthfully;, times the prior
probability of classk,, v, = Cy2 Pr(¢;) is the cost of the error of declaring claBs
when the class is truthfulliZ, times the prior probability of class,, while « = Py, and

B = Py, are the acceptable limits of false positive and true positive rates. Without loss
of generality, we assumg to be the dependent constraint. The quadrdpley,, «, )

comprises thelataof the functionalfs.

Definition 29 (ROC curve Functional). Let (v, 72, o, 5) be given data. Let
0 M
Yo = 7F = ;
1 2

Vi ={v | v=kI'VkeR}

and
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ThenVr +yy is a linear variety through the supremum ROC pa(ift,l), over all possible
ROC curves, under the data. Lgtce X and letf be non-decreasing. Le#(f) be the
range off, and let

T = ([0,a] x [6,1]) N Z(f).

Let zr = m\i[n lv+yo—yll,- Then define
vevVr
yeT

F2(';’717/7270576> : X —=R

by
Ey(fim,va,a,8) = V2 — 20,V f € X, (4.45)

It should be clear that the constapi® is the largest theoretical distance from all linear
varieties to a curve in ROC space.

So far, it is shown thaf;, is minimal at the Bayes optimal point of the ROC curve
under no constraints restricting the values possible for it to take in ROC dpacex(= 1
andg = 0 in the2-class case, and = (1,...,1) in then-class case). We can now relate
this functional to the Neyman-Pearson (N-P) criteria. Recall that the N-P criteria is also
known as the most powerful test of siag, whena, is the a priori assigned maximum
false positive rate [45]. Given a family of classification systeins {Ag : 0 € ©}, the
N-P criteria could be written as

Igla(;( P1|1(A9) SUbjeCt t0P1|2(A9) < ap.
€

Theorem 5 (ROC Functional-Neyman-Pearson Equivalence).et~, be the dependent
2
constraint, andz ~; < 1. The ROC functionaly(-; 71, 72, a, ) under data(1, 0, arg, 0)

=1
yields the same point on a ROC curve as the Neyman-Pearson criteria withy,.
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Proof: Supposé~i, s, «, 5) = (1,0, a0,0). Thenl’ = (1,0) and

and let

Thus,Vr + yy is the appropriate linear variety. Let
T = ([0, ] x [0,1]) N Z(f),

wheref is a ROC curve and considgx € f([0, ap]) as the optimal point in the image of

f under the N-P criteria. Theny = 1 — Sy is the distance tor + yo. Now,
FZ(f) = \/5 — 271,

where

o0 = min v +yo—yl,-
yeT

Thus, we have thaty > 5,V 5 = f(a),V a < ap. Hence,l — Gy <1 -3,V § =

f(a),V a < ap. Then for
an
YN = )
On
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we have that

NI

0-an]

S
8B
m—
_ Q
N ——
|
<
=
INA

On the other hand,

IN

( )
. (0%
min
a<lag 1
y€[0,a0]x f([0,0]) J

min
a<a

min
vevr

N

an

anN

>

-

we have that

y€[0,a0]x f([0,a0])

min - [v+yo -yl

vevr
y€[0,20] % £ ([0,cx0])
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Therefore, we have that

r = min Iv+yo—yll=1-0n.
vevr
Y€[0,a0] % £([0,c0])

Butzr = 1—(g, Wheregy is the optimal point in the image gfunder the ROC functional,
so that8g = (Gy. So, we have that the ROC functional, under dat#, a,, 0), acting on

a ROC curve corresponds to the power of the most powerful test ofigize S

This idea can be extended to the> 2-class problem by setting a maximum accept-

able error ratev,, for each of then — 1 independent error axes, where= k? — k.

4.3.2 The Calculation and Scalability of the ROC Functional. The calculation
and scalability of the functional is straightforward. Suppose we haslasses. In the
two-class case, one axis is chosenfag, but in thek-class case, each axis is an error
axis. This is absolutely necessary in the case where costs of errors differ within a class.
If we apply this methodology to the two-class case, the two axes would b@nd Py,
with the ROC curve starting at poi(@, 1) and terminating at pointl,0). A ROC at the
origin would represent the perfect classification system (the supremum ROC) under this
scheme. We choose the conditional class probabilify , to be the dependent one. Let
m=k*—k.Letd = (v1,...,Vm, Q1,...,qn) be the data, and let each=1,2,...,m
be associated with one of the pairs, (i, j), where for eachh = 1,2, ..., k with i # j, we

haveaj = 1,2,...,k. Letw,, be associated withy;,_,. Letq = (¢1,...,qy). Thenlet

Q: {q’ Q'r:pl\]a?n:]-aQ?am?plU S@T,T%m,l,j:1,2,7k,27é]} (453)

be the set of points comprising the ROC curve within the constraints. Then we have
thaty, = (0,0,...,0) andN = ;—i(ql, ...,7m), SO that if we are given the ROC curve
represented by the s, call it f,, we have that

F.(fg;d) = \/5—21613{%} = \/5—{:1618{ (q, —n) },
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. [<q,-n>
Fu(fem @) = V2 — min { S22
Qe fe || —ml|

FNR 4

T T
Ry FPR

Figure 4.1: Geometry of calculating the ROC functioral, for a point (with vectory)
on ROC curvefc.

with n the unit normal in the direction dN, when() is not empty, and

Fu(fq;d) =0,

otherwise. The notatiof, -) is the scalar product. Figure 4.1 shows the geometry of the

ROC functional calculation where the number of classes is 2, and the given data is

(v, @).

4.4 The Min-Max Threshold

Suppose we are given a RO&manifold withm = k* — k. This can be viewed as
a set of class conditional probability-vectorsA = {«(t) : t € T} that form a continu-

ously differentiable, non-increasing function in R@Gspace. Let

A= {T—a(t) : at) € A}, (4.54)

74



wherel is the appropriate identity vector. We associate with each ofrtlegrors a cost
¢, i =1,2,...,m, so thato,;(t) corresponds te;. There are alsé prior probabilities,
Pk, €ach prior having — 1 copies, so that we can enumerate them and allow egeh
to correspond te;, i = 1,2,...,m wherep; = p, for eachi and some particulat.

Let B = {ej,eq,...,e,} be the standard basis for the linear sp¢e Then putt =
Z cie;. Then for any € R™ we have that

=1

Tv = (c1v1, Cova, + . ., ConVim ) © (4.55)

Now a risk is a decision error times the cost of such an error, so that in our vernacular a

riskisr; = c;a;. HenceZa is arisk vector and'(A) is arisk set. Let;; € R such that

m

> a;=1. Let

i=1
X = {r eR™ :r= Z (‘Zaj)ai,Vaj € AUAC}.
i=1

ThenZ is a convexrisk set. Le?” = {p; : i =1,2,...,m}. & isaconvex set. Now

consider also that

(r,p) = (T, p) = (o, T'p) = (a0, Tp) (4.56)

showing thatt is a self-adjoint linear operator d&™. SinceR™ is a reflexive, normed
space, and?,& are convex subsets &f" andR"™* respectively, we have by the Min-Max
theorem [31]

min [ masx (v, p} | = max [ min {x. p) (4.57)

and this occurs wheneandp are aligned, so that

(s, px) = (7| || P+l (4.58)
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for the uniquer, andp, which makes Equation 4.57 hold true. Now defiie= conv (AU
A°), so thenA is the convex hull of the ROC monifold and its “compliment”. Thus,
A = %. Furthermore, we have that(2) is a convex subset &, and A C R™.
Thus, the Min-Max theorem applies so that

i = i 4.
o [ gnay, (%0} = oy iy (o %) (459

which only occurs wherex and%p are aligned

(s, TPas) = [t || [ TP - (4.60)
Therefore, we have that
min [max(r,p)] = min [max(Ta,p)] (4.61)
— mi Ta, 4.62
min [max (Te, p) (4.62)
— mi T 4.63
min [ max (o, Tp) | (4.63)
— mi T 4.64
222[52%5% (a,Tp) | (4.64)
_ in (c, Tp) | 4.65
il Loy %) (9
Hence,
e[ Ipall = e [ Tpw (4.66)
= [lew| [ Tp.] . (4.67)
So,
el = ko], (4.68)
where
g = 1l (4.69)
P
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The point of this section is that the minimax point on the hull of the ROC manifold is now
shown to be the point with minimurfy-norm. This point corresponds to the minimax
point of the convex risk set generated by the self-adjoint linear transform@tmm the

ROC manifold. This leads to the conclusion that when a researcher is testing two or more
families of classification systems, if he has good knowledge of the prior probabilities, then
the ROC functionalF}, is the preferred functional with which to establish which fusion
rules are fusors. On the other hand, if prior probabilities are not understood well, the
minimax threshold may be the threshold he would want to compare in order to establish
the partial ordering over the fusion rules (and for defining the fusors). In this case, the

researcher would want to compare values of the functional
Gr(A;) = min [[af],, (4.70)
OCGAJ'

for each family of classification systends;. There is one caveat to the solution here.
This is based on research in [42], where it is shown that if the solution to Equation 4.70 is
not on the ROC convex hull, then a random decision rule can be developed using the two
closest points which are on the convex hull, with this random decision rule being optimal
to the optimizing argument of the function@l,(4 ). In other words, it2-norm would

be smaller then what the famil{; can produce.

4.4.1 Defining Fusors. We are now in a position to define a way in which we
can compete fusion rules. Suppose we have a fixed classification system such as that in
Figure 3.2. Each branch of the system (whether fixed, or associated with a fusion rule)
has a ROC manifold that can be associated with the family of classification systems, and
we now have a viable means of competing each branch. If we can only choose among
the two classification systems, take the one whose associated ROC functional is greater.
Therefore, we can also compete these two classification systems with a new system that
fuses the two data categories (or the feature or label categories for that matter) by fixing

a third family of classification systems, which is based on the fusion rule, and finding the
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ROC functional of the event-to-label system corresponding to the fused data (features). If
the fused branch’s ROC functional is greater than either of the original two, then the fusion
rule is a fusor. Repeating this process on a finite number of fusion rules, we discover a
finite collection of fusors with associated ROC functional values. Since the subcategory
of fusors is partially ordered, the best choice for a fusor is the fusor corresponding to the
largest ROC functional value. Do you want to change your a priori probabilities? Simply
adjust+ in the ROC functional’s data and recalculate the BOTs for each system. Then
calculate the ROC functional for each corresponding ROC and choose the largest value.
The corresponding fusor is then the best fusor to select under your criteria. Therefore,
given a finite collection of fusion rules, we have for fixed ROC functional data a partial

ordering of fusors.

Figure 4.2: ROC Curves of Two Competing Classification Systems.

Definition 30 (Fusor over ROC Manifolds). LetT C N be a finite subset of the natural
numbers, withmax I = n. Given{A;};c; a finite collection of similar families of classi-
fication systems, leD; ™) pe the category of fusion rules associated with the produet of
data sets. Lef),, be the ROC functional on the associated ROC manifolds of the families

of classification systems, both original and fused, where- k% — &, with & being the
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number of classes of interest in the classification problem. (’qcettx) be the established
data for the problem. Then given that, is the ROC curve of théth family of classi-
fication systems, angiz the ROC curve of the classification familyy, associated with

fusion rule’ € Ob(O; ™), we say that

so that ifAyi = A,; for all i € I, thenfR is called a fusor.

There is then a category of fusors, which is a subcatego@/g&), and whose arrows
are induced by the ROC functiongl,such that given object8 and& of this subcategory,
then there exists an arrof{ =, Gifandonly if Ay = Agifand only if psz > ps. This

can be seen in the commutativity of the rectangle constructed from Equation 3.9,

%HAmLS(Am) = fan i>§(fAm) = Pm
Zv IY g Y,

Y i ! ¢
G ——Asg—>F(Ae) = fas —=E&(fas) = s

where we can see that in order for the rectangle to commutegthaitst be a partial order.

We are now in a position to define the fusion processes.

Definition 31 (Fusion-Rule Process)Given a fixed classification problem defined by the
categoryL®, a fusion-rule process is an elemeni@h(LY).

We didn’t really whittle this down from the category of classification systems, because
a fusion rule could be the rule “choose classification system X”, which doesn’t necessarily
give a performance improvement. The next definition is the one of interest, since it defines

the fusion with the necessary addition of a qualitative element.

Definition 32 (Fusion Process)Given a fixed classification problem defined by the cate-

gory L¥, and a natural transformation from this category to a category defined by a poset
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P = (X, >), letFUS.: be the subcategory of classification systems induced by the par-
tial ordering. This category has as objects precisely those objeéts which have an
arrow pointing to every fixed branch. We then say a fusion process is an element of
Ob(FUS;=), and we can call this category the category of fusion processes.

We have now given a definition of the fusion process which contains everything nec-

essary. As an example, suppose we start with the system

2N
o

P2
2 > F2

with L a k-class label set. Lely = ag o p; 0 sy and B, = b, o ps o s9, and consider a
functional £}, on the ROC curveg, and fz whereA andB are defined as families of the
respective classification systems showi being created under the assumptions and data
of the researcher’s choice). Then, given fusion r@esuch as that in Figure 4.3, afid

and a second fusion system

Dy

74 X
<S1 S2>

D1><D2

\/

let fs and f5 refer to the corresponding ROC curves to each of the fusion rule’s systems

d

T D3 p3 F3 K L

(as a possible example of ROC curves of competing fusion rules see Figure 4.2 ). Then
we have that ifF,.(fs) > Fr(fa) andFy(fs) > Fr(fs) and similarly, if . (fx) > Fi(fa)
andFy(fz) > Fr(fs) then we say tha®, ¥ are fusors. Furthermore, suppdsg fs) >

Fy(fz). Then we have tha® > ¥. Thus,S is the fusor a researcher would select
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under the given assumptions and data. Figure 4.3 is a diagram showing all branches and

products (along with the associated projectors) in category theory notation.

E
51 <81,52> 2
D, D, xDy—2 D,
S
p1 Dy D2
p
F, Fo P,
\ cu
ag b¢
L

Figure 4.3: Data Fusion of Two Classification Systems.

4.4.2 Fusing Across Different Label Sets. Up to this point, we have considered
fusing only those branches of our fixed classification category. This category had a fixed
event set and a fixed label set. Sometimes researchers have reason to fuse classification
systems which classify events into different label sets before fusion takes place. For
example, consider the classification of a mammogram by two classification systems,
and A,. The first system detects microcalcifications in the breast and returns a result of
cancer or non-cancer. The second system detects irregular masses and returns a result of
cancer or non-cancer. While the label sets look the same (in fact, bijective), they are not
equal. The first partitions the event set into two sets, one where microcalcifications are
present and one where they are not. Obviously, irregular masses can occur in either set, so
that the cancer label of systemy does not correspond with the cancer set of systgm
We would still like to fuse the results, but now we must consider carefully what should

the label set be? It would be prudent to put the label set again as cancer and non-cancer,
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which is isomorphic to both the original label sets. The new label set could still be cancer
or no cancer, however, these labels induce a new partition of the event space since we now
consider cancerous results to be those where microcalcificatiomgegular masses are
returned by the systems. This leads to two definitions developed by Drs. Oxley, Bauer,
Schubert, and myself [46].

Definition 33 (Consistent Functor Category of Classification Systems)A functor cat-

egory of classification system&”, is called consistent when there exists:

1. a probability spacéE, &, i),
2. afinite label set? = {{, (s, ..., (a1},
3. a classification systeme £¥,

such that the set of sets

Ee={r"({;}) : e Li=12... . M}C&

M
forms a partition of. That is, forr(¢;) = E; we have thaU E,=EandE;,NE; =0

=1
for all i # j. In practice, the classification systenreferred to above, in a consistent,

fixed classification system is called the “truth” classifier.

It should be clear from the definition above that

P(r*({t:})|E:) = 1. (4.72)
Definition 34 (Within-Fusion Rule). Let S be a fixed classification system with N fixed
branches. Assume the following:

e (E,&, ) is a probability space;
o & ={ly,ly, .. 0Ly} is afinite label set;

o ZEis consistent;
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o & = {Ey,Ey,....Ey,} C & is the partition ofE with respect taZ and truth
classifierr;
Let Ay represent the branch generated by fusion $tuelf for eachm = 1,2, ..., M, the
fixed branches\,, A,, ..., Ay : E — ¥ are designed to map,, to /,,, then the fusion
rule $R is said to be avithin-fusion rule.FurthermoreAy : E — Z is designed to map

E,, to/,, foreachm =1,2,..., M.

Definition 35 (Across-Fusion Rule).Let S be a fixed classification system with N fixed

branches. Assume the following:

e (E,&, 1) is a probability space;

o L ={l,l,,.. [y} is afinite label set, and is the power set af# so that(.Z, L)
is a measurable space;

e Y is consistent;

o & = {E,Ey,....E,,} C & is a partition ofE with respect to.Z and truth
classifierr;

e 20 M) W) [ are (possibly different) partitions of, which allow
for their functor categories to be consistent, each under a different truth classifier,
sayr, forn=0,1,..., N,

e foreachn = 0,1,..., N, let M™ = card(£™) < M, andZ™ correspond to
the label seL™ = {w{™ W, ... ,w(ann)} in a one-to-one fashion

e foreachn = 0,1,..., N, &™ c & is the partition off with respect taZ™ (and
L ) and truth classifier;,,;

If the families of classification systems,
A:ESLW A E—SL® . Ayv:E— LW,

are designed to map each partition se&6f) to the correspondingj(.”) e L™ for every

n=12...,N,andj < M®, then the fusion rulé that combines the collection of
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such systems (yielding a new family of classification systems),
AO - %(Al,AQ, ...,AN),

is said to be aracross-fusion rule.FurthermoreA, : E — L© is designed to map
partition sets ing’® to the corresponding](-o) c LO forj < MO,
The diagram of across-fusion, wheke; represents the branch which is essentially a

fused branch, is shown in Figure 4.4. If the partitions are equal among the families of

L) — @) —> 20

A
N S

L2 —— @) —— ¢(0)

E

Figure 4.4: Example of Across-Fusion.

classification systems and if the partitions are each injectiv# tthat is,
LW = 2@ = =W — (1) b}, {0y}

so that
LY =L = =LW ={t,,6,....ly} = 2,

then there is no need to consider other partitiongofsince clearly
LO =l WOV ={0, ..t} =2,

wherew!” = ¢;forall 7 =1,...,M. Therefore, within-fusion is a special case of

J

across-fusion.
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4.5 Changing Assumptions, Robustness, and Example

While we have suggested a family of functionals to use as a way of competing clas-
sification systems and fusors, this family is not the only choice available. Furthermore,
one may desire to average functionals or transform them into new functionals. In many
ways, the functional we have presented is general. We have shown its relationship to the
Bayes optimal and Neyman-Pearson points on a ROC curve. It can also be shown to be
related to Adam’s and Hand’s development of a loss comparison functional. In [3], the

loss comparison of a classification system (LC) is denoted by

Lo = / I(e))L(er)der, (4.73)

where, although a slight abuse of notation, we haas an indicator function of whether
or not the classification system is still minimal under egsandc; is the cost of one type
of error whilec is the cost of the otherL(c,) is a belief function which linearly weights
how farc; is from the believed true cost of the error (or raffg. This functional,LC,
can be reformulated as follows:

Given competing classification systemfts= {A;}* , for k € N fixed, fix

a = (a1, az) andy = (71,7.). LetT be the set of all possible. Define a
setH, by

H'YZ {AJ GR ‘ FQ(fAj;77a> Z FZ(fA1777a>7vZ§£jvl: 1727"'7k}‘

Then, forA; we have that
LO(s) = [ T, ()W (2)dy (4.74)
T

wherelV (v) is the weight given to supposition (a belief function in this
case). Thud.C scores the classification families, and induces an ordering on
R.

One more suggested usefdf would be to apply the belief function in a simpler way,

and averagé,, over the believed trug and the believed extreme values of the Bgso

85



that

on

! (Z Fn(fA;7i7a> +Fn(f&§’70>a))7 (475)

Snlfa) = 37

where~, are the believed extreme values of the Betand~, is the most believable
(or probable under some instances) cost-prior product. In [3], the prior probabilities
are assumed to be fixed, but they can be varied according to belief as well (although

developing the belief functions will prove challenging).

As an example, consider the plot of two competing families of classification systems
in Figure 4.5. Since we collected only finite data, the ROC ‘curves’ are actually a finite
collection of ROC points. While our theory develops out of smooth manifolds, never-
theless, we can still calculate the functionals we require, since they operate on individual
points on the ROC manifolds. The two curves in question cross more than once, and this
is typical of many ROC curves, so deciding which family of classification systems is best
really boils down to which classification system is best. Suppose our belief of the situa-
tion we are trying to classify is that the ratio of prior probabilit% is 1, with with a

range of ratios fron% to 1. Furthermore, our experts believe the most likely cost ratio is

Ca
Cij2

a range frorr%. to 2. We will refer to the two ROC curves g%, and fc,. Hence, the

= 1, with a range fron‘é to 2. Therefore, our prior-cost ratio is most Iike%y with

two classification systems shown in the figure yield scords,0fc, ) = Fa(fc,) = 1.137,
indicating that the best classification systems in each family are equivalent with regard
to the most believable prior-cost ratio. Howevs( fc,) = 0.336 > 0.330 = Sa(fc,),
indicating a preference of the best choice frggm once belief regarding the range of the
prior-cost ratio is taken into account. If our beliefs are actual probabilities from recorded
data, the results are even stronger for selecfings the best classification system.

There are, of course, other suggestions for performance functionals regarding com-
peting fusion rules. Consider fusion rules as algorithms, divorcing them from the entire
classification system. Mahler [33] recommends using mathematical information MoEs
(measures of effectiveness) with respect to comparing performance of fusion algorithms

(fusion rules). In particular, he refers to leuelusion MoEs as being traditionally ‘local-
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Figure 4.5: ROC Curves of Two Competing Classifier Systems.

ized’ in their competence. His preferred approach is to use an information ‘metric’, the

Kullback-Leibler Discrimination functional,

K(forf) = [ falotons (25 ) ix.

wheref is a probability distribution of perfect or near perfect ground triftis a prob-

ability distribution associated with the fused output of the algorithm anhd the set of

all possible measurements of the observation. This works fine, if such distributions are

at hand. One drawback is that it measures the expected value of uncertainty and there-
fore its relationship to costs and prior probabilities is obscure (as was the case with the
Neyman-Pearson criteria). The previous functionals we have forwarded for considera-

tion operate on families of classification systems (in particular, ROC manifolds), not just

systems which enjoy well-developed and tested probability distribution functions.
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V. Conclusions

A fusion researcher should have a viable method of competing fusion rules. This is re-
guired to correctly define fusion, and to demonstrate improvements over existing methods.
We have shown in this dissertation every fusion system over a finite number of fundamen-
tal classification system branches can generate, under test conditions, a corresponding
ROC manifold, and under a mild assumption of smoothness of the ROC manifold, a Bayes
Optimal Threshold (BOT) can be found for each family of classification systems. Given
additional assumptions on the a priori probabilities of a target or non-target, along with
given thresholds for the conditional class probabilities, a functional can be generated for
each ROC manifold. Any such functional will generate a partial ordering on families of
classification systems, on categories of fusion rules, and ultimately on categories of fusors,
which can then be used to select the best fusor from among a finite collection of fusors.
We demonstrate one such functional, the ROC functional, which is scalable to ROC mani-
folds of dimensions higher than 1, as well as to families of classification systems which do
not generate ROC manifolds at all. The ROC functional, when populated with the appro-
priate data choices, will yield a value corresponding the the Bayes Optimal threshold with
respect to the classification system family being examined. Another data choice yields
the Bayes Cost Threshold, and we have also shown that the Neyman-Pearson threshold of
a classification system corresponds to the output of the ROC functional with another fixed
data choice (so that it will correspond with the Bayes Optimal Threshold under one partic-
ular set of assumptions). Ultimately, a researcher could choose a cost-prior ratio (which
seems most reasonable) perturbate it, calculate the mean ROC Functional value, and then
choose the classification system with the greatest average ROC Functional value. This
value would be a relative comparison of how robust that classification system is to changes
(e.g., it would answer the question, “how much change is endured before another classifi-
cation system is optimal?”) compared with other classification systems. The relationship
of the ROC functional to other functionals, including the loss comparison functional, is

demonstrated. Finally, there are other functionals to choose, one which we mentioned,
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the Kullback-Leibler discrimination functional, may be unrelated to the ROC functional,
yet may be suitable in particular circumstances where prior probabilities and costs are not
fathomable, but probability distributions for fusion system algorithms and ground truth

are available.

5.1 Significant Contributions

We believe that significant contributions have been made in this dissertation to the
body of knowledge referred to as data or information fusion. The contributions of new

and extended applied mathematics were made in the following presentations:

e Rigorous Mathematical descriptions of:

1. classification systems;
2. ROC curves, manifolds, spaces.

e Extended and corrected Alsing’s ROC convergence theorem [4]. Convergence is
shown to occur almost surely as countably infinite random samples are taken from
test sample spaces, the sets of which are nested and converging to a tflue set
The data does not need to be balanced between the classes as assumed by Alsing.
We relied upon the writings of Doob [9], Billingsley [5], and Kolmogorov [28]
to carefully follow the subtle differences between actual experimental data and its

connection to the theory of probability.

e Developed a ROC functionak;,, which is scalable and can be used without restric-
tions of continuity, differentiability, convexity, etc., which were necessary to the

theory of finding the optimal points on ROC manifolds.

1. Demonstrated its relation to Bayes Optimal thresholds and Neyman-Pearson

thresholds.

2. Constructed a more robust functional from the ROC functional which may be

even more useful than the ROC functional.
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e Proved the Min-Max functional is a minimum two norm problem, and can be used
without restrictions of continuity, differentiability, convexity, etc., which were nec-

essary to the theory of finding the optimal points on ROC manifolds.

e Demonstrated the pitfalls associated with comparing fusors with fixed branches
when doing across fusion, since the label partitions would be different for each

classifier family

e Developed a calculus of variations solution to finding optimal elements of ROC
manifolds under prior probability and cost constraints for finite classes. This is an
extension of known optimizations with two-class problems, which used differential
calculus, and is a novel approach which led to discovering a functional that works
without the constraints of classifier system families having certain well-behaved

properties.

e Developed the Algebra/Category Theory of the fusion of classification systems, in-
cluding how functors, such as the ROC functional and minimum norm functional,
are natural transformations from the categories of fusion rules, and fusors to a par-
tially ordered set. Partial orders arise naturally with an objective function, thereby
allowing definitions of fusors to be constructed, as well as defining categories of
fusion rules and fusors. This description of data fusion meets the desires of the data

fusion communitee as cited in [54].

5.1.1 Recommendations for Follow-on Research. The work described in this
dissertation should be supplemented with the following ideas, which make for future re-

search:

e Find universals in the category of fusors. We suspect that the truth fusor and false
fusor along with the arrow induced by the partial order may be universal in some

way;
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¢ Allow the categories to propagate arrows, such as an arrow representing time in
the event-state category. In this way, stochastic processes may be modeled and

explained better;

e There is a need to define what situation/threat refinements are in order to apply this
fusion process foundation to the elevated levels of data fusion, as described in the

JDL functional model;

e Fnd the common theory behind functionals, such as the ROC functional, and the
information measures of effectiveness, such as the Liebler-Kullback cross entropy.

Also needed is the full relationship between the ROC functional and the AUC,;

e The robustness of the classification systems which are minimum with respect to an
objective function needs to be explored further, as well as, examining the possibility
that costs are not fixed constants, but rather they are functions of the error axes
themselves. Then what is the minimizing argument? Is there a way to find this

point on the ROC manifold?

e Develop and seek out applications for which our theory explains and describes the
process. Our desire is to build up the examples in order to make the explanations
more useful and relevant to those not versed in category theory, but for whom this
research would be beneficial.

This short list is not comprehensive, but gives a few good topics both within category

theory and linear operator theory to expand the state of our current knowledge.
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